
Technical Report
- . /' CMU/SEI-89-TR-19-

ESD-89-TR-27

i "Software Engineering Institute

*<N Kernel Architecture Manual

IJudy BambergerITimothy Coddington
4, Currie Colket

Robert Firth1 ' .Daniel Klein
David Stinchcomb

Roger Van Scoy

D December 1989SlELEcTE l

nC27 DN JEV, rA

I 0 3 15 057II
* *oo s ,

I . a,

I
U

Technical Report
CMU/SEI-89-TR-19

ESD-89-TR-27

1 December 1989

U

I | Kernel Architecture Manual

Judy Bamberger
Timothy Coddington

Currie Colket
Robert Firth

_Daniel Klein
* --, , -_ David Stinchcomb
r, ~TIS C-°i

DI, ,Roger Van Scoyt~=JF,;C d I_

J,-,,+ : Distributed Ada Real-Time Kernel Project

lJ) . t)~ ,.:

I.+
_ Approved for public release.

Distribution unlimited.

I t4 Software Engineering Institute
Carnegie Mellon University

Pittsburgh Pennsylvania 15213I

!

I
I

This report was prepared for the

SEI Joint Program Office 3
ESD/AVS
Hanscom AFB, MA 01731 3
The ideas and findings in this report should not be construed as an official DoD position. It is pub-
lished in the interest of scientific and technical information exchange. 5

Review and Approval

This report has been reviewed and is approved for publication. p
FOR THE COMMANDER 3
Karl Shingler i

SEI Joint Program Office

I

This work is sponsored by the U.S. Department of Defense. *
Copyright © 1989 Carnegie Mellon University 3
This document is available through the DefenseTechnical Information Center. DTIC provides access to and transfer of scientific and I
technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government agency personnel
and their contractors. To obtain a copy, pleasecontact DTIC directly- DefenseTechnical Information Center, Attn: FDRA. Cameron
Station. Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering, picase
contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the tradcmark holder. I
I

U
U

Table of Contents

I. Overview 1
1. Introduction 1

1.1. Definition of Terms 2
2. Software Architecture Overview 4
3. Hardware Architecture Overview 9

3.1. The DARK Testbed 9
3.1.1. Target Processor 9
3.1.2. VME Bus 10
3.1.3. Host Computers 10
3.1.4. Distributed Network 10

3.2. Network Processor 10
3.2.1. Nproc-to-Nproc Interface 13

3.2.1.1. Parallel Interface 161 3.3. Kernel Processor 16
3.3.1. Kproc-to-Nproc Interface 16
3.3.2. Time Synchronization Bus Interface 18
3.3.3. Non-Kernel Device 18

11. Application Interface 21I 1. Alarm Management 22
2. Communication Management 25
3. Hardware Interface 36
4. Interrupt Management 37
5. Process Attribute Modifiers 41
6. Process Attribute Readers 46
7. Process Managers 49
8. Processor Management 54
9. Semaphore Management 63
10. Time Globals 66
11. Time Management 73
12. Timeslice Management 76
13. Tool Interface 79

Ill. Core Kernel 85
1. Bus I/O 865 2. Clock 94
3. Context Switcher 97
4. ExceptionRaiser 99
5. Internal Process Management 101
6. Kernel Interrupt Management 1041 7. Kernel Time 107

I CMU/SEI-89-TR-1 9 I

I
I

8. Network Configuration 113
9. Process-Encapsulation 115
10. Process Index Table 117
11. Process Table 121
12. Scheduler 123 5
13. Time Keeper 138
14. Tool Logger 149

IV. Communication Subsystem 153
1. Communication Overview 154

1.1. Design Decisions 155
2. Data Structures 157

2.1. Datagram Data Structures 157
2.2. DatagramPointer 157 1
2.3. DatagramClass 157
2.4. Datagram 158 I

3. Semaphores and Atomic Regions 163
4. Datagram Management 165
5. Packet Communication 171
6. Kproc/Nproc Interface 172

6.1, Shared Memory 172
6.2. Enqueueing Messages for Transmission 172
6.3. Receiving Incoming Messages 173

7. Nproc Communication Routines 174 I
8. Message Transfer Thread Examples 182

8.1. Detailed Thread Description 182
8.2. Graphic Representation of Thread 183

V. General Utilities 191
1. Lowlevelstoragemanager 192
2. Storage Manager 194
3. Queue Manager 196

VI. Target-Specific Utilities 197
1. Interrupt Names 198
2. Low levelhardware 200
3. Memory Addresses 203
4. MVME133A Definitions 205
5. MZ8305 Definitions 207
6. SCC.porta 209
7. Timer-controller 218

I
CMU/SEI-89-TR-1 9 1

I
VII. Debug Utilities 223

1. CSAdebug 224
2. Debug 226
3. dggdebug 228
4. Make NCT 2315. NCT_debug 233
6. PTB.debug 235
7. semaphore-debug 239

VIII. 68020 Hardware Configuration 241
1. Target Processor Board 242

1.1. MVME133A Board 242
1.1.1. Local Memory 242
1.1.2. Floating Point Coprocessor 243
1.1.3. Real-Time Clock 243
1.1.4. Serial Debug Port 243
1.1.5. Serial Ports A and B 243
1.1.6. Timers 243
1.1.7. Interrupts 2441.1.8. ROM, PROM, EPROM, and EEPROM Sockets 244
1.1.9. VME System Controller 244
1.1.10. P1 And P2 Connector 244

1.2. Kernel Processor Board Configuration 245
1.3. Network Processor Board Configuration 246

2. Parallel Interface 247
2.1. MZ8305 Board 247
2.2. Parallel Interface/Timer 247

2.2.1. Parallel I/O Connector 247
2.3. Input Port Parallel Board Configuration 248
2.4. Output Port Parallel Board Configuration 248

3. Shared Memory 249
3.1. Shared Memory Board Configuration 249

4. VME Chassis 250
4.1. Backplane Jumper Configuration 251

5. Equipment Rack 252
6. Host System 253

6.1. Serial I/O Ports 253
7. Test Equipment 255

7.1. Test Equipment Hardware 255

8. Low-Level I/O 256
8.1. Software 2571 9. Interrupts 258

I CMU/SEI-89-TR-19 III

I
9.1. Interrupt Request Levels 258
9.2. Interrupt Vector Numbers 258
9.3. Interrupt Configuration Summary 258

10. Memory Map 260
11. Network Cable 261 I
12. Synchonization Bus 262

12.1. Bus Description 262
12.2. Bus Operation 262 U

13. P2 Backplane Connector Wiring 266

IX. TeleSoft Ada Compiler Dependencies 267 n
1. Major Dependencies 268

1.1. Software Architecture and Design 268 5
1.2. Basic Data Types 268
1.3. Encapsulation of Assembler 269

2. Software Architecture and Design Dependencies 270
2.1. Code Customization 270
2.2. Representation of Errors 271
2.3. Module Initialization 272
2.4. Chapter 13 Issues 272
2.5. Pragmas 273 3!
2.6. Ada Use Subset 274

3. Basic Data Types and Operations 275 5
3.1. Sizes of Data Types 275
3.2. Untyped Storage 275
3.3. Integer Types 276 I
3.4. Duration 277
3.5. Machine Addresses 278
3.6. Strings 278

4. Encapsulation of Assembly Code 279
4.1. Linkage 279 I
4.2. Program and Data Sections and Attributes 279
4.3. Data Representation 280
4.4. Access to Ada Objects from Assembly Code 280
4.5. Access to Assembler Objects from Ada Code 280
4.6. Procedural Interface 280 I
4.7. Exceptions 281

Appendix A. Data and Control Flow Diagrams 282 1
I

Iv CMU/SEI-89-TR-1 9 1

I
I

Appendix B. Kernel Interface Control Document 285

I Appendix C. Race Conditions 287
C.1. Process Table - Context Save Area 288
C.2. Process Table - Schedule Attributes 288
C.3. Process Table - Message Queue 288
C.4. Process Table - Pending Activities Attributes 290
C.5. Process Table - Semaphores Attributes 290
C.6. Table - Tool Interface Attributes 290
C.7. Interrupt Table 291
C.8. Network Configuration Table 291
C.9. Timeslice Parameters 291

Appendix D. 68020 Assembler Interface 292
D.1. Linkage 292
D.2. Program and Data Sections 293
D.3. Data Representation 293
D.4. Access to Ada Objects from Assembly Code 293
D.5. Access to Assembler Objects from Ada Code 293

D.6. Procedural Interface 293
D.6.1. Entry and Exit Protocol 293
D.6.2. Register Usage 294£ D.6.3. Stack Manipulation 294
D.6.4. Parameter Passing 294

D.6.4.1. Mode of Transmission 294
D.6.4.2. Manner and Order of Transmission 294
D.6.4.3. Accessing Parameters and Returning Function Results 294

D.6.5. Example 295
D.7. Exceptions 296

D.7.1. Raising Exceptions 296
D.7.2. Exception Propagation 296
D.7.3. Guarded Regions 296

Appendix E. 68020 Tailoring 297
E.1. Sizes of Data Types 297
E.2. Untyped Storage 297
E.3. Integer Types 298
E.4. Duration 298
E.5. Machine Addresses 298
E.6. Strings 299

I
I CMU/SEI-89-TR-1 9v

I
U

Appendix F. Procedure to Requirement Mapping 300

Appendix G. Requirement to Procedure Mapping 334 n

Appendix H. Short Names 355

Appendix I. Overview of VMS Version 358

Appendix J. VMS Ada Compiler Dependencies 360 m

J.1. introduction 360
J.1.1. Relevant Documents 360

J.2. Major Dependencies 360 I
J.2. 1. Software Architecture and Design 360
J.2.2. Basic Data Types 361
J.2.3. Encapsulation of Assembler 361

J.3. Software Architecture and Design Dependencies 361
J.3.1. Code Customization 361 I
J.3.2. Representation of Errors 362
J.3.3. Module Initialization 362
J.3.4. Chapter 13 Issues 362 U
J.3.5. Pragmas 363
J.3.6. Ada Use Subset 364

J.4. Basic Data Types and Operations 364
J.5. Encapsulation of Assembly Code 364

Appendix K. VAX-i1 Assembler Interface 365
K.1. Linkage 365
K.2. Program and Data Sections 365 I
K.3. Data Representation 365
K.4. Procedural Interface 366

K.4.1. Entry and Exit Protocol 366
K.5. Register Usage 366

K.5.1. Stack Manipulation 366 I
K.5.2. Parameter Passing 366
K.5.3. Mode of Transmission 367
K.5.4. Manner and Order of Transmission 367 I
K.5.5. Accessing Parameters and Returning Function Results 367

K.6. Exceptions 367
K.6.1. Raising Exceptions 367
K.6.2. Exception Propagation 367
K.6.3. Guarded Regions 368

Appendix L. VAX-11 Tailoring 369
L.1. Sizes of Data Types 369 i

vl CMU/SEI-89-TR-1 Ii

I

L.2. Untyped Storage 370
L.3. Integer Types 371
L.4. Duration 371
L.5. Machine Addresses 371
L.6. Strings 372

A
I
£
£

I
I

I
I
U
I
I

I CMU/SEI89-TR-1 9 vii

I

List of Figures
I Figure 1: Stylized Package Template 2

Figure 2: Kernel Context Diagram 5
Figure 3: Kernel Level 1 DFD 6
Figure 4: User View of the Kernel 8
Figure 5: Host Configuration 11
Figure 6: Distributed Network 11
Figure 7: Network Processor Hardware 12
Figure 8: DARK Network Overview 14
Figure 9: Node-to-Node Connections 15
Figure 10: Parallel Interface Hardware 16
Figure 11: Kernel Processor Hardware 17
Figure 12: Kproc-to-Nproc Interface 17
Figure 13: Non-Kernel Message Header 19
Figure 14: Set Alarm 23
Figure 15: Network Initialization Protocol: Phase 1 55
Figure 16: Network Initialization Protocol: Phase 2 56
Figure 17: Network Configuration Table 114
Figure 18: Process Mapping Table 120
Figure 19: Process Table 121
Figure 20: Pending Activity States 122
Figure 21: Application Blocks 126
Figure 22: Application Unblocks 127
Figure 23: Run Queue 129
Figure 24: Setting an Alarm Event 140
Figure 25: Event Expiration 141
Figure 26: Time Event Queue 147
Figure 27: Data Flow Thruugh the Kernel and Network 154
Figure 28: Packet Layout 171
Figure 29: Send_ Message - Application Message to Datagram 184
Figure 30: Output Message Queue 185
Figure 31: Datagram to Packet Data Flow 186
Figure 32: Packet Traffic onto Network 187
Figure 33: Packet Traffic off Network 188
Figure 34: ReceiveMessage - Datagram to Application Message 189
Figure 35: Sync Processing 211
Figure 36: Chassis Hardware 2503 Figure 37: Equipment Rack 252

I viii CMU/SEI-89-TR-19

I

Figure 38: VAX Pors to Testbed Ports Cross Reference 254

Figure 39: Interrupt Summary 259 3
Figure 40: Memory Map 260
Figure 41: Flat Ribbon Cable Schematic 261
Figure 42: Kproc to Synchronization Bus Interface 263
Figure 43: P2 Cable Harness Schematic 264
Figure 44: Store Notation 282
Figure 45: Process Notation 283
Figure 46: Flow Notation 284
Figure 47: VMS Overview 359

I
!
I

I
I
I
I
I
I
I
I

CMU/SEI-89-TR-1 9 Ix jI

I

List of Tables
Table 1: Kernel Message Formats 285
Table 2: Synchronization Message Formats 286
Table 3: Initialization Message Formats 286
Table 4: Tool Interface Message Formats 286

I

I
I
I
I
I
I
a
I
'I
I

£ x CMU/SEI-S9-TR-1 9

I
I

Kernel Architecture ManualI
Abstract: This document contains the detailed design description of the Kernel.
The overall system architecture and the rationale for it are presented as relevant
to both the application (i.e., the external view of the Kernel) and the Kernel
maintainer (i.e., the internal view of the Kernel). This document presents the
algorithms and data structures needed to implement the functionality defined in
the Kernel Facilities Definition. This document also contains an in-depth
description of the communication protocol used by the Kernel, both the network
software and hardware that compose the DARK testbed at the SEI, and a detailed
enumeration of all compiler dependencies exploited by Kernel software. This
document is geared toward engineers responsible for porting and maintaining the
Kernel and engineers requiring detailed information about the internals of the
Kernel.

I I 1. Overview

1. Introduction
j Part I of this document describes the architecture of the 68020/TeleSoft TeleGen2 version of

the Distributed Ada Real-Time Kernel (DARK). This description is divided into the following
5parts:

* Overview: provides a top-level architectural view of the Kernel software and
hardware.

*Application Interface: describes the design of the user-visible portions of the
Kernel. The user invokes Kernel operations via this interface (found in Part II.)

" Core Kernel: describes the design of the internal packages of the Kernel. These
packages implement the functionality of the primitives, but are not visible to the
user. The internal Kernel packages are described in Part Il1.

* Commur.ication Subsystem: describes the design of the software portion of the
communication network implemented for the DARK testbed (found in Part IV).

" General Utilities: describes the design of the general, internal support
packages used by the Kernel (found in Part V).£ Target-Specific Utilities: describes the design of the target-specific, internal
support used by the Kernel (found in Part VI).

" Debug Utilities: describes the testing and debugging support packages used in
implementing the Kernel (found in Part VII).

" DARK Testbed: describes the target hardware configuration on which the
software described in this document depends (found in Part VIII).

3 CMU/SEI-89-TR-19 I

I

Ada Compiler Dependencies: describes the interface to the Ada compiler of the
Kernel (found in Part IX). I

The packages discussed in this document are all described in the same manner:

" A stylized picture showing the exported types, operations, and exceptions for
the package, as illustrated in Figure 1.

(Expor-ted Dta Type/Structurte)I I I
+--------------------------------

I Eported ProTedtye/ cton I

II<Exported Exoceptio/nct

< ZtXpor-eod &,xael=ti.on >

I
Figure 1: Stylized Package Template I

" A general discussion of the package.

" For each visible entry in the package and each major internal object of the
package:

1. General remarks about the object. 5
2. An invocation sequence (where appropriate).
3. PDL. In the PDL, italic font is used to denote abnormal returns or

blocking conditions. I
Some of the packages will contain data flow diagrams (DFD) illustrating the functioning of
the package in the overall system context. The notation used in these diagrams is 5i
explained in Appendix A.

1.1. Definition of Terms
The following terms and their definitions are intended to clarify their meaning and identify
how they are used in the context of this document.

DARK hardware. All of the hardware equipment used to build the processor nodes
and ring network. I
Datagram. The basic unit of communication between a Kproc and an Nproc at the ISO
Data Link layer. A datagram contains an application or Kernel message that is 1
transmitted to another process.

DARK testbed. Testbed for short; comprises all of: DARK hardware, host computers, if
and terminals.

2 CMU/SEI-89-TR-19 1

I
Host system. Comprises MVAX-II computers; used to download executable images toithe nodes and debug Kernel and application code online.

Kernel processor. Kproc for short; one of two processor boards located on a
processor node. It executes the Kernel and application processes and provides all of
the computing resources for the node.

Network processor. Nproc for short; one of two processor boards located on a
processor node. It has been programmed and configured to operate as a network port
on the ring network.

Packet The basic unit of communication between Nprocs at the ISO Physical layer.
Each packet comprises 32 bits of information: 8-bit sender address, 8-bit receiver
address, and 16 bits of data. The Nproc breaks datagrams into packets for transfer3 across the DARK network.

Processor node. All the hardware components co-located in a single VME chassis to
provide the functionality of a single part of a distributed processor system. It includes a
parallel interface, two processor boards, shared memory board, and chassis hardware.
The term node is synonymous with processor node.

Shared Memory. That memory in a processor node provided by the shared memory

board. It is accessible by both the Nproc and Kproc, and is separate from the local
memory on each processor board.

3
I
I
I
i
I
I
i

I
I CMU/SEI-89-TR-1 9 3

I
a

2. Software Architecture Overview
The detailed architecture of the Kernel is presented in the parts that follow. This chapter is
an overview and rationale for the Kernel software architecture.

When viewed as a single entity, the Kernel's context diagram looks like that shown in Figure
2. This shows that the Kernel interfaces with four external entities:

1. Application

2. Event timer

3. Communication subsystem 3
4. Real time clock

Decomposing the context diagram one level (shown in Figure 3) reveals that the Kernel is 3
comprised of five major areas.

1. Application interface !

2. Time keeper

3. Datagram management

4. Clock interface I
5. Core Kernel

The Application Interface is the functionality exported by the Kernel to the user. These U
packages are shown in Figure 4 as windows extending into the Kernel (the use of this
interface is characterized in [KUM 89]). The packaging structure shown in Figure 4 was5
arrived at by applying the following design goals:

1. Closely related functions grouped together

2. No cross dependencies between user visible packages

a. to allow deletion of unneeded functionality

b. to allow selective replacement of functionality

3. Common types extracted into support packages

4. Conditional compilation flags to control Kernel-generated exceptions
5. Generics used to control compilation flags and tailorable parameters

Each of these packages is discussed in more detail in Part II.

The Clock interface, Time Keeper and Core Kernel represent the working part of the 3
Kernel. These packages are shown inside the black box of Figure 4. These packages are
structured to meet the following design constraints:

1. Isolation of the compiler-dependent parts, to enable rehosting the Kernel on I
different compilers.

2. Isolation of hardware-dependent parts, to enable rehosting the Kernel on
different target configurations. U

4 CMU/SEI-89-TR-19 1

I
I
I
I
I
I

ApplicationI
IPrimitive

I Invocation

Clock Interrupt
Real Time o DayTimer Control Event

Time Timer Interrupt Timer
Clock Clock Control - - - -I

Communication I Communication5 Interrupts I I Primitive
I Invocation

Communication
it Subsystem

I
I Figure 2: Kernel Context Diagram

5

5 CMU/SEI-69-TR-1 95

I
U

I
Pnltv I

IPrimitiv

Invocation

ApplicationI
interface III . ,

Clok nt im Timer ControN~.I

Time of ayo.J Clock Kernel Keeper Tier InterrupCl,o - J -w -

DMa ta g ra rnMenagementI

Communication iCommunicllon !
Inlerptsli Primitive

I Invocation

I
Figure 3: Kernel Level 1 DFD g

I

6 CMU/SEI-89-TR-I I

I
£

3. Isolation of the Scheduler, to allow different scheduling regimes to replace that3 provided by the DARK project.

4. Isolation of network initialization, to allow for different network startup schemes
to replace that provided by the DARK project.

35. Selection of a small set of key data structures with which to drive the
execution of the Kernel.

£ These packages are discussed in Part Il1.

The final piece is Datagram Management. This package is also inside the black box of
Figure 4 and is the Kernel's interface to the communication subsystem (thus isolating both
the application and the Kernel from the network). This piece is discussed in Part IV.

7
I
U
I

I
I
I
I
1

I

i CMU/SEI-89-TR-1 9 7

I

SupotProcess imer Context
Spckage Encapsulation Controller Switcher-

Procesor Low
PoesrLevel Datagrani

Management Hardware ManageenI Pa5CCrn

Communications 1 C Target Kre
Management PotJ Specific KieeI Mn:C:tin ties

IAlarm
Management

IProcess Attribute 1n0 geup mxcet
Readers IManagement

Process Attribute

Modifiers Time C
IKeeperClc

Process
Managers Poe sScheduler Inera

Index Table ProcessTMaragemen 3
Time
Management IGenerl &

Debug

Process UtiISemaphore iTable Message
Management Queue

I I
C onfgrto Interrupt Tiesic

I

KreUser K Interface Kernel User
Key: Prcess Objt Package Internals visible via

Figure 4: User View of the Kernel I

8 CMUISEI-89-TR*19 1

I
i

3. Hardware Architecture Overview

The DARK prototype has been developed for a MC68020 microprocessor target. The
prototype hardware configuration uses two processors per node on the network. One
processor is designated the Kernel processor (Kproc); while the other is designated the
network processor (Nproc). The Nproc is responsible for low-level communication across
the network; the Kproc is responsible for all other Kernel operations, including execution of
the application code.

All communication between nodes in the network is via datagrams. One implication of
datagram-based communication is that the network is not responsible for verifying the
correct or complete delivery of messages between processes; if a datagram cannot be sent
(or received) by a node in the network due to network overload or data transmission errors,
the datagram is discarded, and the sending (and receiving) processes receive no notification
of the message's loss. It is the application engineer's responsibility to build any needed3message validation and verification into the application code.

Parts IV and VIII describe all the software and hardware necessary to implement the3 datagram communication model described.

1 3.1. The DARK Testbed

This section presents a high-level overview of the system issues of the DARK testbed; more
details can be found in Part ViII.

The DARK testbed was set up with the following goals:

I eUse a validated Ada compiler.
* Exemplify a typical loosely coupled distributed system.1* Facilitate obtaining performance measurements.

* Use hardware components compatible to those already in use at the SEI.

3 The DARK testbed comprises a set of distributed processor nodes connected by a network.
Each node has two 68020 processors: the Kproc for running the application and the Kernel,
and the Nproc for handling node-to-node communication across the network. Using dual
processor nodes allows the communication needs to be isolated from the processing needs
of the node and simulates a number of real world applications where the lowest level of3 interprocessor communication is handled by special hardware.

3.1.1. Target Processor3 The Motorola 68020 microprocessor is used in both industry and military systems for a
variety of general-purpose and specialized applications, including embedded and distributed
real-time systems. It is a popular choice for hardware designs requiring fast, efficient, and
compact processing.

I CMUISEI-89-TR-19 9

I
I

There are several Ada cross compilers and other development tools available for the
MC68020. The MC68020 is available on several board formats, such as Multibus II and
VME bus.

3.1.2. VME Bus 5
The DARK testbed is built around the VME board format. VME is a standard board
supported by many third-party vendors. A large variety of processors and peripheral
devices are available in this format. The VME bus specification document defines the VME
bus, which specifies the type of board connector, number, name, and type of control and
data signals available at the connector; and the protocol for interfacing to other devices,
including interrupts, and read/write accesses.

The VME bus is used in the DARK testbed to couple together the Nproc, Kproc, shared
memory, and two parallel interface boards of one node.

3.1.3. Host Computers 3
Four clustered gVAX-ll computers operate as host to the DARK target processors. They are
used for various phases of software development, including creating and editing Ada source
modules, compiling, linking, loading, and debugging.

The TeleSoft TeleGen2 Ada development system (see [TeleSoft 88]) and support tools are
used for compile, link, loading, and testing of DARK software.

The various activities for programming and testing the target software can be carried out on
the host remotely over the SEI Ethernet at user terminals.

Each processor node is connected, either directly or through a switch, to a host computer by
two serial lines (see Figure 5). These ports are for downloading and debugging executable
images.

3.1.4. Distributed Network S
The distributed network consists of processor nodes and the data path connecting them.
The DARK network and host system are shown in Figure 6. The network is a ring with four I
nodes, providing a computing resource for application use.

3.2. Network Processor

The Nproc is a VME board with a Motorola 68020 microprocessor running at 20MHz, as 3
shown in Figure 7.1 It is the part of a processor node that manages network communication
for the Kernel.

It is identical to the Kproc for ease of replacement and maintenance. I
10 CMU/SEI-89-TR-19

11w Worktation UtawWorutaion s oktto

UOHost DHotCHsB

5 Host A

5SEI Eun

Figure 5: Host Configuration

UMIoki mUwWrro

NIf I.4N3 //

NosI
Figure 64: Distributed Network

3 CMU/SEI-89-TR-1 9

Shared5
Kproc memory N o Parallel 1/0

Legend.
Nproc to shared memory, parallel In

'A O"and Out data flow

Figure 7: Network Processor Hardware

12 CU/SI-89TR~i

I
!

The Nproc has two serial ports connected to the host system. One is for debugging; the
other is for downloading executable images. These ports are connected to one of the host
machines.

The Nproc uses interrupts to communicate with the Kproc during message handling. In the
current DARK implementation, there is no need for the Kproc to interrupt the Nproc,
although the hardware configuration does permit it.

3.2.1. Nproc-to-Nproc Interface
The ring network, although circular in topology, is not continuous and relies on the operation
of the Nprocs to keep information moving. The network is formed by a series of
Nproc-to-Nproc interfaces. A packet, the basic unit of information, is passed from
Nproc-to-Nproc until it reaches its destination. The purpose and content of the packets are
discussed in Part IV.

Figure 8 shows the components of all four nodes and how they are connected. Each block
corresponds to a VME board. This diagram is the basis for the following discussion.

The network hardware consists of Nprocs, parallel interfaces (ports), and flat ribbon cable
segments. Each of these hardware components is discussed in more detail in Chapters 2
and 11, respectively. Figure 9 illustrates how they are connected.

I For example, In a single transfer, the sending Nproc moves four bytes (one packet) of data
from shared memory to the registers of the out parallel port. The port, in turn, transfers the3 register data to the cable segment that is connected to another (in) parallel port. The data
are captured by the in parallel port and eventually transferred by the receiving Nproc to
memory. What happens to the packet after that depends on whether or not it has reached
its assigned destination. These software operations are discussed in Section 7.4.

The interface between the Nproc and the in and out parallel ports is interrupt-driven. When5a packet is received at the in parallel port, the port raises an interrupt that is serviced by a
special interrupt handler on the Nproc. When a packet is successfully transferred to an out
parallel port, it too raises an interrupt. In this case, however, the interrupt is to indicate the
port is no longer busy.

The parallel ports used provide a double buffering capability, thus permitting faster
operation. Because of this feature, the in parallel port is capable of latching a second
packet before the first has been transferred to memory by the Nproc, and the out parallel
port can accept a second packet to output before the first has been completely accepted by
the receiver on the other end of the interface.

Two pairs of handshake control lines and special read/write sequences make up the
protocol for Nproc-to-Nproc transfers. A 32-bit packet is moved to the out parallel port in
4-byte pieces. The hardware is designed to manipulate the handshake lines automatically3 when the bytes are written into the respective registers in a specific order. The result of

3 CMU/SEI-89-TR-19 13

IN OUT

Network cable IN OTNetwork cable
segment segmentI

r3

0 IN

IN OUT
Network cable Lgn

7N4S12 Nwo NproSnll Ne twr cabl OU IN segmentpo

OUgen Leugpalelnor
VM- MEbu

- metwory

F~~gur~ Net:r DAKfewokOvriew

14 CMU/SEI-894-TR1 i

Shared Parallel VO0
Kproc memory Nproc

VM u

Legen

NewrIal eget ewe
noe

FiueI oet-Nd oncin

IM/E-8-R1

I

doing so correctly is that the handshake signal causes the data to be latched, and in turn an I
interrupt is generated on the receiving end. There are two sets of handshake lines between
parallel ports: one for the low 16-bits and one for the high 16-bits. They both operate the 3
same, the only difference being that the high-order set is involved in generating the
receiving port's interrupt after the last byte is moved into the port. 1

3.2.1.1. Parallel Interface
The parallel interface boards provide a 32-bit data path between two adjacent nodes in the
ring network. Each node requires two of these interfaces, as shown in Figure 10. One is
designated the in port and the other the out port. 1

Shared 5
Kproc memory Nproc

Nproc daaflow to adfo

"" '"/ " " - '" if I . f data aniro

parallel 1/0 boards

Figure 10: Parallel Interface Hardware

3.3. Kernel Processor
The Kproc is a VME board with a Motorola 68020 microprocessor running at 20MHz, as
shown in Figures 11. It is that part of a processor node where the Kernel and application
execute.

3.3.1. Kproc-to-Nproc Interface

I

The interface between the Kproc and Nproc is established using the VME bus, interrupts,
and shared memory accesses. Both processors are part of the same node and are
attached to the same VME bus (see Figure 8), which permits one processor to issue an
interrupt to get the attention of the other.

When data need to be exchanged between the Kproc and Nproc, such as a message being 5

16 CMU/SEI-89-TR-1 9

I
I

I N], . c Shared
memory Nproc Parallel i/O

, . ,, , .

share memory

Fiur 1:Kene roeso Hardware-:

,---'-," • :: - ---- Vo '. "

.0

shared memory to receive (see Figure 12). The Nproc issues an interrupt, which is
recognized and serviced by the Kproc, to indicate that at least one message has beenI received and has been placed in shared memory. Chapter 6 contains a more detailed
discussion of the Kproc-to-Nproc interface.

Npo to .wo i • °

Figure 1: KnProcssor Intrdae

m 9 1
/ 1 Locasl to shared memory access

I Npfoc to KIpoc interru4

i Figure 12: Kproc-to-Nproc Interface

3 CMU/SEI-89-TR-1 9 17

I-
I

3.3.2. Time Synchronization Bus Interface
The Kernel uses a serial interface connected to all of the Kprocs to implement time 3
synchronization. Port A of each Kproc is connected to this serial interface, called the
synchronization (or sync) bus.

Normally, serial interfaces are used in point-to-point communications, such as RS-232C.
However, if the line drivers for the serial interface are RS-485/422 compatible, such as those
used for Port A, more than one receiver (called a slave) can be serviced by a sender (called I
the master). This capability is used to essentially "broadcast" the notification to synchronize
time across all the nodes. U
Initially, the Kernel configures all the Kprocs as slaves. When the application calls the
synchronize time primitive, the Kernel asserts Port A of that Kproc as master and sends the
new time information to all the other nodes on the sync bus. The interrupt-driven software
on the slave Kprocs accept the new time and continue processing.

3.3.3. Non-Kernel Device i
The non-Kernel device may be connected to the network and may communicate with other
portions of the application using the DARK network protocol. This requires that the I
non-Kernel device be able to send and receive the 32-bit packets used to communicate via

the network. For a non-Kernel device to communicate with a Kernel device requires that the
non-Kernel device append to the start of any message the 8-word datagram header (shown I
in Figure 13).

All of the fields must have the values shown in Figure 13, with the following fields specified I
by the non-Kernel device:

1. Message length: size of the message in bytes 5
2. From node addr: the network address of the non-Kernel device

3. To node addr: the network address of the Kernel device receiving the
message

This is the minimum information needed by the Kernel on the receiving node (to insure the

message is correctly routed). The exact format of a datagram is discussed in Part IV.

II
I
I

18 CMU/SEI-89-TR-1 9 1

10 1516 31

mesgIent
0

30
I ~~from node address_ _ _ _ _ _

5 to node address

I _ _ _ _ _ _

0

0

3 Figure 13: Non-Kernel Message Header

IM/E-9T-91

1
I
I
I
I
U
I
I
1
I
U
I
I
I
I
I
I
I

20 CMU/9E149-TR-1 9 1

I
I

II. Application Interface

This part defines the user view of the Kernel; the user invokes Kernel operations via calls to
this interface. The packages in this section parallel the primitives and requirements
described in [KFD 89]. Please refer to the corresponding sections in the [KFD 89] for3 additional background information.

2
I
I
I
I
I
I
U
I
I
I

I

I CMU/SEI-89-TR-1 9 21

1. Alarm Management

I I

+----------------------------------I Set Alarm I

I Cancel la= I
+----------------------------------I I
< Alam Expired >

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
22. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 13.

The functioning of alarms is straightforward. Setting an alarm causes a countdown timer to
be initiated: when this timer reaches 0, the alarmexpired exception is raised in the setting
process. Three situations exist:

1. If the process is executing when the alarm expires, the exception is raised by
the Scheduler immediately after the alarm expires.

2. If the process is blocked or suspended when the alarm expires and its alarm
resumption priority is higher than that of the current running process, then the
Scheduler preempts the current running process and immediately raises the
alarmexpired exception in the alarmed process.

3. If the process is blocked or suspended when the alarm expires and its alarm
resumption priority is lower than that of the current running process, then the
Scheduler does not immediately raise the alarmexpired exception. Rather,
the Scheduler raises the alarmexpired exception sometime later, when he
process's alarm resumption priority allows it to become eligible to run.

Figure 14 illustrates the key facets of Set alarm. In this scenario, there are no other
pending events.

I
I
I
U

22 CMU/SEi-89-TR-1 9 I

1 1 8I
I ,

II
STnageme

IProcess 3 7
Table

> 6 Time 5 Event

4 ' Keeper " Timer

I
Time Event
Queue

U 1. The application invokes setalarm.
2. The current alarm state of the process is read from the process-table and

error checking is performed.
3. An insert.event request is made of the timekeeper.
4. The alarmevent is enqueued in the timeeventqueue.
5. The event timer is configured for the alarm.
6. The process table is updated to reflect the pending alarm event.
7. The alarm event's internal identifier is returned.
8. Control returns to the application.

Flgurg 14: Set Alarm

I
I

I

U CMU/SEI-89-TR-1 9 23

I
1.1. Set Alarm

1.1.1. Interface I
set_aLarm (alarm time 3

resumption priority)

1.1.2. PDL
If called from an interrupt handler then

raise illegal context
Else I

If an alarm event is pending then
Remove the pending alarm event
Set the pending exception name to resettingalarm

End if
Insert the new alarm event

End if 3

1.2. Cancel Alarm

1.2.1. Interface

cancel-alarm I

1.2.2. PDL 3
If called from an interrupt handler then

raise illegalcontext
Else i

If an alarm event is pending then
Remove the pending alarm event

Else 5
Raise no alarm set

End if
End if 3

I
I
I

24 CMU/SEI-89-TR-1 9 3

I
I

2. Communication Management
+---

I I

I Send Message I

I Send Message and Wait I
+----------------------------------

I Receive Message I
+---------------------------------

II
+----------------------------------
I Allocate Device I
---I ---

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
19. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 10. This package contains all of the communication primitives needed to send and
receive messages.

I The send primitives support acknowledged and unacknowledged sends. The
SendMessage primitive is non-blocking and is considered an unacknowledged send. It
does not generate a response from the receiving Kernel when the receiver receives the
message. The SendMessageAnd Wait primitive, on the other hand, is considered an
acknowledged send and can block. It solicits a response from the receiving Kernel when5 the message is received by the receiver. As with all blocking kernel operations, a timeout
can be specified so the application can control the length of time it is blocked.

3 The ReceiveMessage primitive blocks if there are no messages in the process' input
message queue. Here again, the calling process can specify a timeout to control how long it
is blocked. If an acknowledgment is required for a received message then the Kernels take

* care of it.

Local optimization is performed when the receiving and sending processes are on the same
node. When a call to SendMessage or SendMessage_AndWait is made the node of the
sender and receiver are compared. If the nodes are not the same then the message must
be sent over the network to the proper node. However, if the nodes are the same then the
network and the associated overhead can be avoided. The amount of processing saved
during local optimization will depend on whether the receiving process is waiting or not.

5The following discussion deals with the different situations that are taken into consideration
during send and receive (message) processing. Except where explicitly stated, all the5 situations apply equally for remote and local sends.

CMU/SEI-89-TR-119 25

I
I

The actions taken by the communication management to successfully send and receive a
message will depend on the form of the send call and what situation the receiving process is
in when the message arrives. The following paragraphs describe the different situation that
affect the processing of a message.

When a message is sent the receiver is specified. Normally, the receiver will be in one of
several possible situations:

1. Receiver is not waiting
2. Receiver is waiting with no messages queued for it
3. Receiver is waiting with at least one message queued for it I

The actions that result in each of these cases will depend on whether it is an acknowledged
or unacknowledged send. And furthermore, if it is an acknowledged send the actions will 3
depend on whether the specified timeout is:

1. Not specified,
2. Negative and zero, or
3. Greater than zero.

First, consider the state of the receiver when the message arrives. If the receiver's current I
pending activity is not ReceivePending then it is not waiting at a ReceiveMessage call.
On the other hand, if the pending activity is receivepending then it will be either blocked on i
or unblocked. Waiting and blocked means no other message have been received that
would have cause the receiver to be unblocked (changed to suspended). Therefore, the new
message would cause the receiver to be unblocked. Keep in mind that even though a I
receiver is unblocked when a message is received it may or may not resume execution right
away depending on its resumption priority relative to the currently running process. 3
If the receiver is waiting but not blocked then that means it has apparently been unblocked
already due to a previously received message and it can be assumed there is at least one
message on its msg queue.

In the cases where the receiver is not waiting or it is waiting but there are messages already
queued for the receiver, the message can't be copied directly into the receiver's buffer. The I
copy will have to take place later when the receiver dequeues the datagram from its msg
queue. Otherwise, if the receiver is waiting and no other messages are in the queue the
message can be copied directly into the receiver's buffer.

Local optimization takes place in varying degrees, depending on the exact situation. Here
are two important optimizations that are possible: I

1. Copy sender's message directly into the waiting receiver's buffer.
2. Pass a datagram directly from send processing to receive processing.

The specified timeout value in an acknowledged send dictates the response from the
receiving Kernel. The calling application specifies a timeout value less than or equal to zero

26 CMU/SEI-89-TR-1 9

U
I

to be NAKed immediately if the receiver is not ready to receive the message when it arrives.
It specifies a timeout value greater than zero to wait for a certain amount of time before
being NAKed. And, finally, it does not specify a timeout if it is to wait forever for the receiver
to receive the message. Timeout values can be specified as an elapsed or epoch time.

IHere is a summary of the send primitive cases, the different forms of the acknowledged and
the results:

Desired Result Send Message form(s) Timeout Value

Infinite wait Not applicable
Send MessageAnd_ Wait(...)

No wait X <= 03 SendMessageAndWait (.. 77meoutAt => X,...)
SendMessageAnd_ Wait (... 77meoutAfter => X ...

Wait until X X > Current time
SendMessageAnd_ Wait (..77meoutAfter => X...

Wait for X X > 0
SendMessageAnd_ Wait (... TimeoutAt => X,...)

2
U
I
U
I
I
I
I
I
I CMU/SEI-89-TR-1 9 27

I
I

2.1. Send message

2.1.1. Invocation
send message (5

receiving process identifier,
message tag,
message length,
message text)

2.1.2. PDL 1
If the tool interface is enabled

Log the message attributes for this process
Log the message contents for this process I

End if

Check to see according to local information if receiver has been I
declared and is still alive.

If receiver is not ok then
call scheduler

Else
If receiver is the same node as sender then

do local optimization
Else I

Send a process datagram to receiver.
Return to caller without blocking

Endif
Endif

2.2. Send Message and Wait U
During acknowledged sends, a timeout event is set on the receiving node as opposed to the 3
sending node. If the timeout expires, the receiving node's Kernel sends a negative
acknowledgment response. Otherwise, it will respond with a positive acknowledgment when
the receiver issues a ReceiveMessage and the message is copied into its working space.

2.2.1. Invocation 3
sendmessage_and-wait (

receiving process identifier,
message tag, I
message length,
message text,
resumption priority of sender) 5

or

send meS sage_andwait (
receiving process identifier,

28 CMU/SEI-89-TR-19 1

I
I

message tag,
message length,
message text,
timeout after,g resumption priority of sander)

or

5 procedure send messageandwait (
receiving process identifier,
message tag,
message length,
message text,
timeout at,3 resumption priority of sender)

2.2.2. PDL
3 If the tool interface is enabled

Log the message attributes for this process
Log the message contents for this process

I End if
Check to see if receiver has been declared and

is still alive and
call has not been made from an interrupt handler

If receiver is not ok then
Call scheduler

End if
If receiver is local (on the same node as the) sender then

Indicate sender has a SEND WITH ACKNOWLED(bET PENDING

Do local optimization
Else the receiver is on a remote node

Indicate sender has a SEND WITH ACKNOLEDCGEENT PENDING

Send a process datagram with the sender' s message to the
receiver on a remote node

Block the sender
End if

2.3. Receive Message

2.3.1. Invocation

receive message(
sender of message,
message tag,
message length,
message buffer,
buffer size,
resumption priority,
messages lost)

3 CMUISEI-89-TR-19 29

I
I

or

receive message (1
sender of message,
message tag,
message length,
message buffer,
buffer size,
resumption priority, £
timeout after,
messages lost)

procedure receive-message (
sender of message, I
message tag,
message length,
message buffer, 3
buffer size,
resumption priority,
timeout at,
messages lost)

2.3.2. PDL 3
Perform error check for:

ILLEGAL CONTEXT FOR CALL

If there is a datagram on the process' msg queue then 5
If datagram has been optimized then

Do local receive optimization
Call the scheduler

Else datagram is from a remote node
Do copy action that includes copying message from datagram

to receiver's buffer, and clearing any timeout event
and sending an acknowledgment for acknowledged sends I

Call scheduler
End if

Else no datagram is available
Store the receiver's buffer address and size in the process

table in case the sender uses local optimization
If a receiver timeout is specified then

Set the timeout type
Try to set a timeout event
Perform error check for no timeout event set

End if
Loop

If there is no datagram available on the process' msg queue then
Set the receiver' a pending activity to RECEIVE PENDING I
Call the Scheduler to Block the receiver

Else a datagram is available
If the tool interface is enabled

30 CMU/SEI-89-TR-19 1

U

U
Log the message attributes for this process

I Log the message contents for this process
End if
If datagram has been optimized then

Do local receive optimization
Else datagram is from a remote node

Do copy action that includes copying message from datagram
to receiver's buffer, and clearing any timeout event and
End isending an acknowledgment for acknowledged sends

End if

Exit
End if

End loop
Call SchedulerI

2.4. Allocate Device

2.4.1. Invocation

allocate_devicereceiver (
pid of process to receive the non-Kernel device messages,
device id of non-Kernel device originating the messages)

12.4.2. PDL

If the indicated device is a Kernel device then3 raise no such device
Else

Log the receiver in the NCT for the non-Kernel device
If this allocation is replacing a previous allocation then

raise replacing old allocation
End if

I End if

2.5. Copy Message

2.5.1. Invocation

I copynessage (
datagram to copy,
sender of the datagram,
message tag,
message length,
message buffer,
buffer size,
messages lost)

U
3 CMU/SEI-89-TR-1 9 31

I
I

2.5.2. PDL
Set out parameter from datagram header information 3
Perform error checks for:

RECZIVR BUFFER TOO SMALL

Copy message from datagram to buffer to receiver's buffer 5
Clear receiver's overflow status
If acknowledge send and sender has a sEND WiTa ACK PENDING then

Send a kernel datagram to acknowledge sender
Clear any pending activity for the sender

End if
Delete datagram from receiver's msg queue
Free up the datagram1
Clear any pending activity for the receiver I

2.6. DoLocalSendOptimization

2.6.1. Invocation I
dolocalsend_optimization(

receiver of message,
operation,
message tag,
message length,
message text,
t imeout,

resumption priority) 5
2.6.2. PDL

If receiver is waiting and blocked then I
Allocate an empty datagram
If no is datagram available then

If message is an acknowledged send then I
Set MESSAGENOTRZCEZVZD exception

End if
If not called from an interrupt handler then

Call Scheduler
Else

return
End if

Else a datagram is available
Set the datagram header fields from input parameters
Indicate LOCAL OPTIMIZATION is taking place
Indicate the sender's message has already been copied to

the receiver's buffer
Perform error check on receiver's buffer size I
Copy from sender's buffer to receiver's buffer
Clear any queue overflow status
Clear any pending activity for the sender I

32 CMU/SEI-89-TR-19 I

I
I

Enqueue the datagram
Call Scheduler to unblock the receiver
If not called from an interrupt handler then

Call Scheduler
Else it was called from interrupt handler

return
End if

End if
Else the the receiver is not waiting and blocked then

Perfom message queue overflow error check
If timeout is less than zero or call is a SendMessage then

SAllocate an empty datagram
If no datagram is available then

If SendMessageAndWait was issued then
Clear sender's pending activity
Set NESSAGE NOT RECEIVED exception for the sender
Call Scheduler

Else
Call Scheduler

End if
Else a datagram is available

Set fields of the datagram header with input parameters
Indicate LOCAL OPTIMIZATION is taking place
if Send_MessageAndWait was issued then

Indicate receiver needs to copy the message from
sender's buffer to its buffer

Set the sender's buffer address in the datagram for
receive message processing

Enqueue the datagram on the receiver' s mxg queue
Indicate the sender's pending activity as a sEND

WITR ACKNOWLIDG3NT PINDING

Call Scheduler to block the sender
Else send issued with a SendMessage

Indicate receiver needs to copy the message from the
datagram' s buffer

Copy message from sender's buffer into datagram's
buffer

Enqueue the datagram on the receiver's mag queue
End if

End if
Elsif the timeout is equal to zero then

Clear any pending activity for the sender
Set the mzSSArz NOTECUIVED exception for the sender
Call Scheduler with the resumption priority

Else the timeout is greater than zero
Allocate a zero length datagram
If no datagram is available then

Clear any pending activity
Set the MESSAGE NOT REcEIVED. for the sender
Call Scheduler with the resumption priority

Else a datagram is available

I CMU/SEI-89-TR-19 33

I
I

Set datagram header fields with input parameters
Indicate LOCAL OPTIMIZATION is taking place
Indicate the receiver needs to copy the message from I
the sender's buffer

Set the sender's buffer address in the datag:ram for
receive message processing I

Try to set a timeout event
If the timeout has not expired (event set ok) then

Save the queue name and datagram pointer so the I
datagram can be removed if the timeout expires

Set the sender's pending activity to
SEND WITH ACENOWLEDGNT PENDING

Enqueue the datagram on the receiver' s msg queue
Call Scheduler to block the sender

Else the timeout has expired (no event set)
Clear any pending activity for the sender
Set the MUSSAGQ NOT RZCEIVED exception for the sender
Free up the datagram
Call Scheduler with the resumption priority I

End if
End if

End if
End if

2.7. DoLocalRcv_Optimization

2.7.1. Invocation I
do local_r cv_optimization(

datagram to receive,
sender of message,
message tag,
message length,
message buffer,
buffer size,
resumption priority,
timeout value,
has timeout,
messageslost) 3

2.7.2. PDL
Set the out parameters, such as message tag, message length, and

sender from the appropriate datagram header fields
Perform error checks for BUFFER TOO SMALL FOR NUSSAGE
If COPY FROM THE SENDER' s BUFFER is required then

Using the sender buffer's address passed in the datagram header
Copy message from sender's buffer to receiver's buffer

Elsif coPY FROM TzE DATAGRAX' S BUFFER is required then

Copy message from datagram buffer to receiver's buffer

34 CMU/SEI-89-TR-19 I

I
I

Else NO COPY IS NESSARY

Do nothing
End if
If this is an acknowledged send and the sender has a SEND WITH

ACKNOWLEDGKNT PENDING and the MzssAG ID match then
Acknowledge sender by clearing any pending activity for sender
Call Scheduler

Else no need to acknowledge
Do nothing

End if
Delete the datagram from the receiver's mag queue
Free up the datagram

II
I
I
U

I
I
I
I

I
I
I CMUISEI-69-TR-1 9 35

I

3. Hardware Interface U
This package encapsulates the basic Ada types in a form that is more transportable. Since
this is package is compiler and hardware dependent, the issues involved in this
encapsulation are discussed in Part IX with this package shown in Appendix E.

I
I
I
I
I
I
I
I
I
I
I
I
U

36 CMU/SEJ-89-TR-1 9 I

I
U

4. Interrupt Management
+---
II

+----------------------------------
I Enable I
+----------------------------------+ I-

+----------------------------------
I Disable I
+----------------------------------

I I.
+----------------------------------
I IEnabled I
------------------------- --------

+----------------------------------
I Simulate Interrupt I
+----------------------------------I4 I

------------- --------------------
I Rind Intezrupt Kandle I
+----------------------------------

S+---
For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
20. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 11.

Note: in all cases, an "illegal interrupt" raises a CONSTRAINTERROR, since the parameter
(sub) type domain is the domain of legal interrupts. Thus, there is no explicit check for the
legality of an interrupt.

I
I
I

U
I
I
U CMU/SEI-89-TR-1 9 37

I
I

4.1. Enable

4.1.1. Interface

Enable (interrupt name) 3
4.1.2. PDL

If the interrupt_owner in the interrupt table is not application then I
Raise illegal_interrupt

End if
If handler state in interrupt table is not bound then

Raise illegal-interrupt
End if
Set interrupt state in the interrupt table to enabled
Set interrupt's entry in the Kernel interrupt vector to point to
the user-supplied interrupt handler

4.2. Disable 3
4.2.1. Interface

Disable (interrupt name)

4.2.2. PDL 5
If the interrupt_owner in the interrupt table is not application then

Raise illegal_interrupti
End if
Set interrupt state in the interrupt table to disabled
Set interrupt's entry in the Kernel interrupt vector to point to
the null interrupt handler

4.3. Enabled I
4.3.1. Interface 3

Enabled (interrupt name)
return boolean

4.3.2. PDLI

If the interrupt_owner in the interrupt table is not application then
Raise illegal-interrupt

End if
Return the interruptstate field of the interrupt table 3

38 CMU/SEI-89-TR-19 I

I

4.4. Simulate Interrupt
4.4.1. Interface

Simulate interrupt (interrupt name)

4.4.2. PDL
U If the interrupt owner in the interrupt table is not application then

Raise illegal_interrupt
End if
If the interrupt_state in the interrupt table is not bound then

Raise illegal_interrupt1 End if

Set interrupt_source in the interrupt table to internal
Increment interrupt_nesting level
Begin atomic

Perform an indirect call of the interrupt handler pointed
to by the interrupt's entry in the interrupt table

I Exception
when others >

'handle all exceptions, taking no action (to simulate the
effect of an unhandled exception in a real interrupt
processing)

End atomic

Decrement the interrupt_nesting level
Set the interrupt source to be External
If the interrupt can preempt then

Schedule
Else

return to the caller
End if

1 4.5. Bind Interrupt Handler

5 4.5.1. Interface

bindinterrupt_handler (interrupt name,
address of interrupt handler procedure,
interrupt can cause process preeption)

I CMUISEI-89-TR-19 39

I
I

4.5.2. PDL
If the interrupt_owner in the interrupt table is not application then 3

Raise illegalinterrupt
End if

If interrupt handler is already bound ->
Store new handler address in the interrupt table
Store new value for can preempt in the interrupt table 3
Raise re-binding interrupt handler

Else
Insert interrupt name into interrupt table
Store handler address in the interrupt table
Store value for can,-Yreempt in the interrupt table
Set handler state to bound in the interxapt table 3
If the interrupt can preempt then

Call machine-dependent routine to bind a "slow" interrupt
Else

Call machine-dependent routine to bind a "fast" interrupt
End if

End if 3

-W I
I
I
I
I
I
I
I
I

40 CMU/SEI-69-TR-1 9 1

I
I

5. Process Attribute Modifiers
.4---

I I
+----------------------------------
I Die I

I Kill I
+----------------------------------

+---------------------------------+
I Set Process Priority I
4----------------------------------

+----------------------------------
I Set Process Preemption

5 +------------------------------------

I Wait
+----------------------------------

+ ---

For a description of the functionality of this. package, see Kernel Facilities Definition, Chapter
18. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 9.

4I
I
I

I

I
U
I CMUISEI-89-TR-1 9 41

I
I

5.1. Die

5.1.1. Interface

Die 3
5.1.2. PDL

If called fxom an interrupt handler then
Raise illegal_context

End if
Purgemessage_queue
Release all claimed semaphores
Deallocate any non-Kernel devices assigned to this process
Schedule (new state => dead) I

5.2. Kill I
For a remote process kill, a special Kernel-to Kernel message is formatted and transmitted
to the node hosting the process to kill. See Appendix B, Table 1, for the exact format of this I
message.

5.2.1. Interface I
Kill (process to kill)

5.2.2. PDL
If the process to kill is not dead then

If the process to kill is remote then I
Sendkernel_datagram ("killmessage")

Else
Removeprocess (process to kill) from the scheduler
Purge_mess age_queue
Release all claimed semaphores
Deallocate any non-Kernel devices assigned to this process I
If the process to kill is the current-running process then

Schedule (new state => dead)
Else

If the tool interface is enabled
Log the process attributes for process being killed

End if
Remove process (pid => process to kill,

newstate => dead)
End if

End if
Else

null.. the process to kill is already dead
and there is nothing to do

42 CMU/SEI-89-TR-1 9 I

I
I

End ifI
5.3. Set Process Priority

I Changing the priority of a process has been optimized to account for the following situations:

1. Setting the priority to its current value is a null operation.
2. Raising the priority of a process does not affect its eligibility to run; it remains

the current.runningprocess.
3. Lowering the priority of a process may cause it to be descheduled.

5.3.1. Interface
I setyprocess priority (new process priority)

5.3.2. PDL
If called from an interrupt handler then

Raise illegalcontext
End if

If there is no change in priority then
return

Else
Schedule (new priority => new process priority)

End if

5.4. Set_processpreemption
Changing the preemption of a process has been optimized to account for the following3 situations:

1. Setting preemption to its current value is a null operation.
2. Setting preemption to disabled does not reschedule the process; it removes

the current slice event, so the timeslice doesn't expire.
3. Setting preemption to enabled simply calls the Scheduler (which selects the

highest priority process - if it is the invoking process, it automatically inserts a
slice event). Consequently, setting process preemption to enabled may cause
the calling process to be descheduled.

U 5.4.1. Interface
Setyprocessypreemption (new process preemption)

U
U CMU/SEI-89-TR-1 9 43

U
I

5.4.2. PDL

If called from an interrupt handler then 3
Raise illegalcontext

End if

If there is no change in preemption then
return

Else if the current preemption is enabled and
the new preemption is disabled then

if time slicing is enabled then
Removeevent (timeslice)

End if
Set the preemption to disabled

Else... the current preemption is disabled and
the new preemption is enabled I

Schedule (new preemption => enable)
End if

5.5. Wait I

This primitive has been constructed to have the following semantics:

1. All calls to wait cause the Scheduler to be invoked.

2. If the wait is for a future time, the process blocks until that time arrives. I
3. If the wait is for a non-future time, no wait is done, but the process

relinquishes control of the processor and may be descheduled.2

5.5.1. Interface
Wait (until epoch time,

resumption priority)

or 3
Wait (for elapsed time,

resumption priority) 3
5.5.2. PDL

If called from an interrupt handler then I
Raise illegalcontext

End if
Insert-event (wait timeout)
If the event identifier is null then (waiting for a non-future time)

If there Xs no change in priority then

2Thus, if two processes of equal priority need to execute in a co-routine like paradigm, for example, a wait with
a time of 0 may be used to switch between the co-routine processes, see Appendix E of [KUM 89]. I

44 CMU/SEI-89-TR-1 9

I
I

Removeprocess (current-runningprocess)
end if
Schedule (new priority => resumption priority)

Else.. .the wait is for a future time
Schedule (new priority => resumption priority,

newstate => blocked)U End if

5.6. Purge Message Queue

3 5.6.1. Interface
purgemessage_queue (process identifier)

5.6.2. PDL
Locate the message queue of the process being killed
Cap it so that the Kernel im-ediately rejects
all future incoming messages

For each message in the message queue
If the message requires an acknowledgment then

Remove the timeout event associated with the message
Sendkernel_datagram ("nak") to the message originator

5End if
Delete the message from the message queue
Free the datagram holding the message

End loop
Free the current send buffer

IU
I
I
I
I
I
3 CMU/SEI-89-TR-1 9 45

I
I

6. Process Attribute Readers 1
.---

I I

+----------------------------------
I to &Me .1 I

+----------------------------------
+ Na+ O I

I Got Process Priority I
+----------------------------------

I Get Process Preeption I

+ I

+---+

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
18. The requirements satisfied by this package are found in the Kernel Facilities Definition,

Chapter 9.

II
I
I
I
I
I
I
I

46 CMU/SEI-89-TR-19g I

U
I

6.1. Who am I

6.1.1. Interface
whoam_i return processidentifier

6.1.2. PDL
3 If called from an interrupt handler then

Raise illegal_contextforcall
End if
Return current running_process

6.2. Name Of

3 6.2.1. Interface
namaof (process identifier)

6.2.2. PDL return process logical name...as a string

Return the logical name field of the specified process
from the process table

1 6.3. Get Process Priority

3 6.3.1. Interface
getyrocesspriority return priority

1 6.3.2. PDL
If called from an interrupt handler then

Raise illegal_contextfor call
End if
Return priority of the currentrunningprocess

6.4. Get Process Preemption

6.4.1. Interface
5 getprocesspreaption return preemption state

I
3 CMU/SEI-89-TR-1 9 47

U
I

6.4.2. PDL
If called from an interrupt handler then U

Raise illegal_context
End if
Return preem tion status of the current runningprocess

I
I
I
I
I
1
I
I
I
I
I
I
I
I

48CMU/SEI-89-TR-1 9 I

1 7. Process Managers
+---

+----------------------------------
I Declare Process.

3 Create Processa
--

I +--

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
16. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 7.

IM/E-9T-94

I
I

7.1. Declare Process: for Kernel Process

7.1.1. Interface I

Declare process (process logical name) 3
return process identifier

7.1.2. PDL

If calling unit is not the Main Unit then
Raise callingunit not-main-unit

End if
Declareyrocess realwork

7.2. Declare Process: for non-Kernel device I

7.2.1. Interface I
Declareprocess (device logical name)

return process identifier

7.2.2. PDL

If calling unit is not the Main Unit then I
Raise calling_unit-not main-unit

End if

If the device logical name is not in the NCT then
Raise unknownnonkerneldevice

End if

Declarey"rocessreal-work

7.3. Create Process
The act of creating a process broadcasts a special Kernel-to-Kernel message. The exact
format of this message is shown in Appendix B, Table 1.

7.3.1. Interface

Create process (process identifier,
address of the process code, I
stack size for process local data,
message queue size as number of messages,
how to handle message queue overflow, i
initial priority,
initial preemption) I

50 CMU/SEI.69-TR-19

I
I

7.3.2. PDL

If the process identifier is null then
Raise illegalprocess_identifier

End if

If calling unit is not the Main Unit then
Raise clling_unit_not main unit3 End if

If process identifier is not in the process table then
Raise illegal process_identifier

End if

If process being created was declared as a non-Kernel device then
Raise nokernel process on-non_kernel device

End if

If process has already been created then
Raise process_already_created

End if

If the address of the process code is illegal then
Raise illegalprocessaddress

* End if

Generate the processindex
Allocate the stack space
Set the stackIlow-address field in the process table
Set the stack_highaddress field in the process table
Set the priority field in the process table

Set the preemption field in the process table

Set the messagequeue_size field in the process table
Set the queueoverwrite rule in the process table
Set the message_queue field in the process table to a new,

Create the call frame via processencapsulation
Insert the process into the Scheduler
Set the locally_created field in the process table
Broadcast the process created massageI

7.4. Declare_processrealwork
The PDL below embodies the following design issues:

1. All stack address are longword (i.e., 32-bit) aligned due to hardware3 constraints.
2. The stack must be allocated before the initial call frame may be created

herein.

3 CMU/SEI-89-TR-19 51

I
I

7.4.1. Interface

declareyprocessreal _work (process logical name, I
kind of process)
return process identifier

7.4.2. PDL
If the process logical name is already in use then 3

Raise process_already_exists
End if
Create a new process table entry
If there is insufficient space to do this then

Raise insufficient space
End if 3
Log the process logical name in the process table entry
Log the kind of process in the process table entry
Mark the process as declared
Enqueue the new process table entry in the process table

7.5. Null_procedure I

This procedure is used by create process if a user error is detected and a clean recovery in 3
not possible. In such a case, Createprocess creates a truly void process.

This procedure is never called; it does nothing. 3
7.5.1. Interface 3

N/A

7.5.2. PDL I
Null I

7.6. Calling_unit is main unit

The PDL below embodies the design issues:

1. During processor/process initialization, the Main Unit must be the

nufllprocess.

I
I

52 CMUISEI-89-TR-1 9 I

U
I

7.6.1. Interface

I callingunit is main-unit return boolean

I 7.6.2. PDL
Return indication whether or not the current_runningprocess
is the null-process

7.7. Is illegal
This function tests for an illegal address for process code. As this may be highly application
specific, a simple default is currently implemented: the function accepts anything as a legal
address.

7.7.1. Interface
isillegal (address to test)

7.7.2. PDL return boolean

5 return false

I
I
I
I
I
I
I
I
I CMU/SEI-89-TR-19 5

U
I

8. Processor Management
--- +

I I

I Initialize Master Processor I
+-------------------------------------

II
--------------------------------------I Initialize Subordinate Processor II

II

I Initialization Complete I

+--~

For a description of the functionality of this package, see Kernel Facilities Definition,
Chapters 15 and 16. The requirements satisfied by this package are found in the Kernel
Facilities Definition, Chapters 6 and 7.

The implementation of processor or network initialization requires that a number of
messages be exchanged among the nodes. The exact format of each message is
described in Appendix B, Table 3.

The initialization protocol occurs in two phases: 1
Phase 1: where the Master processor verifies the connectivity of the network.

This is shown in Figure 15.I
* Phase 2: where the Master processor synchronizes all the Kernel clocks and

commences process creation. This is shown in Figure 16.

These figures illustrate the protocol as it works for a simple two-node network.

II
I
I
I
I

54 CMU/SEI-89-TR-1 9 1

I
I

IProcessor Communicatio~n 8 Bus

Managemen ' 1aaemn 0

3 1147 410
NCT

* Communication Subsystem

S Managemen 9 Management 10-I~

1. Initializesubordinateprocessor call is issued. Initialize master processor

call is issued.

2. The NCT is read and the initialization order of the network is determined.

3. The masterready message is sent to the subordinate via
communicationmanagement and busio over the communication subsystem.

4. A message interrupt arrives at the subordinate.

5. The master-ready message is delivered to the subordinate via busio and
{communicationmanagement}.

6. The subordinate responds by determining the size of the NCT, formatting an
nctsize message and sending it to the Master.

7. A message interrupt arrives at the Master.

8. The nct-size message is delivered to the Master.
9. The subordinate continues its response by reading the NCT, formatting an

nct entry message for each row of the NCT, and sending each message to
the Master.

10. A message interrupt for each nct entry message arrives at the Master.

11. Each NCT-entry message is delivered to the Master.
12. The Master reads its copy of the NCT and verifies the validity of the

subordinate's NCT.

I Figure 15: Network Initialization Protocol: Phase 1

5
5 CMUISEI-89-TR-1 9 55

I

10I
9I

4' 5

1. Th e Master reads the current time at day.3
2. The Master sends the go message to the subordinate.
3. An interrupt arrives at the subordinate.

4. The go message is delivered to the subordinate.I
5. The subordinate sends a go.acknowledge message to the Master.

6. The subordinate resets its local clock to be synchronized with the Master'sI

7. Control returns to the subordinate's Main Unit.
8. An interrupt arrives at the Master.I
9. The go acknowledgment is delivered to the Master.

10. Control returns to the Master's Main Unit.

Figure 16: Network Initialization Protocol: Phase 2

56 I

II
17, I

56 TheMate/redsth curetTimeofda.9

I
I

8.1. Initializemasterprocessor

8.1.1. Interface
initialize masterpprocessor (current time of day

initialization timeout)

3 8.1.2. PDL
Phase 0

Check that calling unit is main unit
If the data structures have not yet been initialized then

Initialize the real time clock
Initialize the process table
Initialize the scheduler
Initialize datagram management
Initialize bus io
Initialize the time keeper
Indicate that the data structures are now initialized

End if
Determine order

Phase 1
For each node in the initialization order loop

Lookup the process index for the main unit on the subordinate
Insert a timeout event
Send masterready message to the subordinate
Receive nct
Remove the timeout event
If the subordinate is needed to run then

If the subordinate's NCT matches the Master's NCT then
The subordinate has successfully completed phase 1

Else
The subord-nate has has failed to complete phase 1
Broadcast a network failure message
Raise network-failure

End if
Else

If the subordinate's NCT matches the Master's NCT then
The subordinate has successfully completed phase 1

Else
The subordinate has has failed to complete phase 1

End if
End if

Except ion
When the timeout expires =>

The subordinate has has failed to complete phase 1
If the subordinate is needed to run then

Broadcast a network failure message
Raise an exception

End if
When some other exception occurs =>

The subordinate has has failed to complete phase 1
If the subordinate is needed to zun then

I CMU/SEI-89-TR-19 57

I
I

Broadcast a network failure message
Raise network-failure

End if
End loop

Phase 2
For each node in the in.Ltialization order loop

If the subordinate completed phase 1 then
Lookup a process index for the main unit on the subordinate
Insert a timeout event I
Fornat a go message
Send go_enclosed message to the subordinate
Wait for subordinate to respond I
Remove the timeout event
If the subordinate is needed to run then

If tuie response is a go acknowledgment then
The subordinate has successfully completed phase 2

Else
The subordinate has has failed to complete phase 2
Broadcast a network failure message
Raise network-failure

End if
Else

If the response is a go_acknowledgment then
The subordinate has successfully completed phase 2

Else
The subordinate has has failed to complete phase 2

End if
End if

Exception
When the timeout expires =>

The subordinate has has failed to complete phase 2
if the subordinate is needed to run then I

Broadcast a network failure message
Raise an exception

End if
When some other exception occurs =>

The subordinate has has failed to complete phase 2
If the subordinate is needed to run then

Broadcast a network failure message I
Raise network failure

End if
End loop

When some other exception occurs =>
If the subordinate is needed to run then

Broadcast a network failure message
Raise network-failure I

End if

1

58 CMU/SE149TR-19 I

I
I

8.2. Initializesubordinateprocessor

8.2.1. Interface
initializesubordinateyprocessor (initialization timeout)

8.2.2. PDL
I Phase 0

Check that calling unit is main unit
If the data structures have not yet been initialized then

Initialize the real time clock
Initialize the process table
Initialize the scheduler
Initialize datagram management
Initialize bus io
Initialize the time keeper
Indicate that the data structures are now initialized

End if

Phase 1

Insert a timeout event
Wait for the Master to send a masterready message
Remove the timeout event

If the message is a master-ready message then
Sendnct

Else
Broadcast a network failure messageI Raise network-failure

End if

Except ion
When the timeout expires =>

Broadcast a network failure message
Raise an exception

When some other exception occurs =>
Broadcast a network failure message
Raise network-failure

Phase 2..........................
Insert a timeout event
Wait for the Master to send a go_enclosed message
Remove the timeout event
If the message is a go_enclosed message then

Send the a goacknowledge message to the Master
Reset the lo,-. epoch time

Broadcast a network failure message
Raise network-failure

I End if

Exception
When the timeout expires =>

Broadcast a network failure message
Raise an exception

I CMU/SEI-89-TR-19 59

I
I

Exception
When some other exception occurs =>

Broadcast a network failure message
Raise network failure I

8.3. Initializationcomplete

8.3.1. Interface I
initialization_complete (final initialization timeout)

8.3.2. PDL
Check that the calling unit is the Main Unit I
Insert a timeout event
Broadcast the init_complete message

Phase 1
Determine if all the nodes have broadcast their initcomplete messages,
this is done by looping thru all the nodes in the NCT while
their local initialization complete flags are "and"ed together

If the result is false, then the loop is repeated (since the
initialization complete messages arrive asynchronously)

If the result is true, then
all the nodes call have issued a call to initialization-completeI
and continue by pruning the process table of unneeded entries

Phase 2
Initialize the process table iterator
While their are more entries to process loop

Get the next process table entry
If the process is declared then

If the process was (remotely created and locally created) or

not created at all then
Broadcast network failure
Raise network failure

Else
The process entry is correct

Else.. .it was remotely created by never locally declared I
Clear the entry in the process mapping table
Purge the entry from the process table

End loop

If the resulting process table is too large then
Broadcast network failure
Raise networkfailure

End if

Log initialization complete
Remove the timeout event I
Schedule the first eligible application process

Exception I

60 CMU/SEI-89-TR-19 I

I
I

When the timeout expires =>
Broadcast network failure
Raise an exception

I 8.4. Determine-order

8.4.1. Interface

determine-order

1I 8.4.2. PDL

For each node entry in the NCT loop
If the node is a kernel device and the initialization order is set then

Increment the participating node count
Log the node in the initialization order

End if
End loop

If the participating node count is zero (indicating no explicit
initialization order was specified by the user) then

For each node entry in the NCT loop

If the node is a kernel device then
Increment the participating node count
Log the node in the initialization order

End if
End loop

End if
Log the participating node count

I 5. Receive nct

1 8.5.1. Interface

receive_nct (expected subordinate3 - received subordinate nct)

8.5.2. PDL

Wait for'a message from the subordinate

If the message is not an nct_count or
the wrong subordinate sent the message then

Raise an exception
End if

Once the count is successfully received then loop until
that number of NCT entries is received
Wait for a message from the subordinate
If the message is not an nct_entry or

the wrong subordinate sent the message then

I CMU/SEI-89-TR-19 61

I
I

Raise an exception
End if

End loop

Return the received NCT to the Master

8.6. Send_nct

8.6.1. Interface
send_nct (master processor) I

8.6.2. PDL 5
Send the size (in entries) of the NCT to the master processor
For each entry in the NCT loop

Send the NCT entry to the Master processor
End loop

I
!
I
U
I
I
i
I
I
I

62 CMU/SEI-89-TR-1 9 1

I

I

I cJlaim I
+---------------------------------------

+----------------------------------
I I C-i

I Relea. I
4---------------------------------

* +--

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
17. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 8.

6I

I
I
U
U
I
I
I
I
I CMUISEI-89-TR-19 6

I
I

9.1. Claim

9.1.1. Interface
Claim (semaphore name, I

resumption priority)

Claim (semaphore name,
elapsed timeout,
resumption priority) 3

or

Claim (semaphore name,
epoch timeout,resumption priority)

9.1.2. PDL p

If called from an interrupt handler then
Raise illegalcontext

Else if semaphore already claimed by this process then
Raise illegal context

End if

If queue depth - -1 then.. the semaphore is available
Set semaphore's wait queue depth to 0
Schedule (pnority => resumption priority)

Else
Set semaphore pending field in Process Table
Increment the semaphore's wait queue depth by 1 I
Enqueue process in the semaphore's wait queue
If a timeout was specified then

Insert-event (semaphore timeout)
End if
Schedule (priority => resumption priority,

state => blocked) 5
End if

9.2. Release

9.2.1. Interface i
Release (semaphore name)

i

64CMU/SEI-89-TR-19 I

I
I

9.2.2. PDL

If called from an interrupt handler then
Raise illegal_context

Else if semaphore not claimed by this process then
Raise notmysemaphore

End if

5 If the semaphore's wait queue depth - 0 => no process is waiting
Set semaphore's wait queue depth to -1
Set wait queue head to null

Else
Decrement queue depth by 1
Dequeue process from the semaphore's wait queue
If a timeout is pending then
Remove-event (semaphore timeout)

End if
Clear semaphore pending field of the dequeued process

in Process Table
Insert Process(dequeued process) into Scheduler
Schedule

End if

5
I
S
S
U
I
I
I
I
I CMUISEI-89-TR-1 9 65

U

10. Time Globals
I II

---------------- -' II
(Elapsed time)
(Zero elapsed_time)
(Epoch_tm) tim
(Zeroepoch-time)
(Integralduration)
(Ticks yersecond) I

I Createelapsed time I
Create-epoch time
Seconds (2) 1
Milliseconds I
Microseconds

"+-" (2)
"-" (2) I
"*" (2)
I ''I I1I

"<" (2) I
"<"(2)
" " (2)
">"(2)I

Base time
To elapsed-tia,
To epoch-time I
To ada duration
To kernel time

+ +

6I I
I
!

I
66 CMU/SEI-89-TR-19 I

I
I

10.1. Create elapsedtime
10.1.1. Interface

Create_elapsed_time (day, second) return elapsedtime

10.1.2. PDL

Multiply day by kernel time for I day (86400 seconds)
Convert second to kernel time
Add to result of multiplication
Convert result from kernel time to elapsed time
Return elapsedtime value

10.2. Create elapsedtime

1 10.2.1. Interface
Createelapsedtime (day, second) return epoch-time

10.2.2. PDL

Multiply day by kerneltime for 1 day (86400 seconds)
Convert second to kernel-time
Add to result of multiplication
Convert result from kernel-time to elapsed time
Return epoch time value

1 10.3. Seconds

10.3.1. Interface

Seconds(an Ada duration) return elapsed time3or
Seconds(an integral duration) return elapsed time

I 10.3.2. PDL

Convert argument to kernel time
Convert result to elapsed_time
Return elapsed time

6
I CMU/SEI-89-TR-1 9 67

I
10.4. Milliseconds

10.4.1. Interface
Milliseconds (integral milliseconds) return elapsed time

10.4.2. PDL
Convert integral milliseconds to kernel-time n
Convert result to elapsed time
Return elapsed-time I

10.5. Microseconds

10.5.1. Interface

Microseconds (integral microseconds) return elapsed time

10.5.2. PDL

Convert integral microseconds to kernel-time
Convert result to elapsed time
Return elapsed time

10.6. "+" I
10.6.1. Interface

"+" (elapsed time, elapsed time) return elapsed time I
or

"+" (epoch time, elapsed time) return epoch time

10.6.2. PDL

Convert arguments to kernel-time
Call kerneltime. "+" to perform operation
Convert result from Kernel time to appropriate type
Return converted time value

10.7. " I

66 CMU/SEI-89-TR-19 I

I
I

10.7.1. Interface

I "-" (elapsed time, elapsed time) return elapsed time

or
"-" (epoch time, elapsed time) return epoch time

or "-" (epoch time, epoch time) return elapsed time

10.7.2. PDL

Convert arguments to kernel time
Call kernel-time."-" to perform operation
Convert result from Kernel-time to appropriate type
Return converted time value

10.8. *"

£ "*" (elapsed time, integer) return elapsed time

or3 "*" (integer, elapsed time) return elapsed time

10.8.1. PDL
Convert arguments to kernel time
Call kernel time. "*" to perform operation
Convert result from Kernel-time to appropriate type
Return converted time value

£ 10.9. "ir

3 10.9.1. Interface

"/" (elapsed time, integer) return elapsed time

I 10.9.2. PDL

Convert arguments to kernel-time
Call kernel time."/" to perform operation
Convert result from ernel time to appropriate type
Return converted time value

I

I CMU/SEI-89-TR-1 9 69

I
I

10.10. "<"

10.10.1. Interface
"<" (elapsed time, elapsed time) return boolean 3

or

"<" (epoch time, epoch time) return boolean J
10.10.2. PDL

Convert arguments to kernel time
Call kernel time."<" to perform comp arison
Return result 5

10.11. 1<= 99 I

10.11.1. Interface

"<=" (elapsed time, elapsed time) return boolean I
or

"<=" (epoch time, epoch time) return boolean If
10.11.2. PDL 5
Convert arguments to kerneltime
Call kerneltime. "<=" to perform comparison
Return result

10.12. ">" o

10.12.1. Interface
">" (elapsed time, elapsed time) return boolean

or

">" (epoch time, epoch time) return boolean

10.12.2. PDL I
Convert arguments to kernel time
Call kernel time.">" to perform comparison
Return result

I
70 CMU/SEI-89-TR-1 9 1

I

I
10.13.">-

10.13.1. Interface

3 ">-" (elapsed time, elapsed time) return boolean

or

3 ">-" (epoch time, epoch time) return boolean

10.13.2. PDL
Convert arguments to kernel-time
Call kernel time. ">=" to perform comparison3 Return result

I 10.14. Base-time

10.14.1. Interface

'3 base-time return epochtime

10.14.2. PDL

Return base time value

10.15. To epochtime

£ 10.15.1. Interface

Toepochtime (kernel time) return epoch time

10.15.2. PDL

Convert argument to epoch-time
Return converted value

1 10.16. Toelapsedjtime

1 10.16.1. Interface

Toelapsedtime (Ada duration) return elapsed time

3 or
Toelapsedtime (Ada duration) return elapsed time

I CMU/SEI-89-TR-19 71

I
I

10.16.2. PDL

Convert argument to elapsedtime I
Return converted value I

10.17. to ada duration

10.17.1. Interface

Toada duration (elapsed time) return ada duration

10.17.2. PDL
If elapsed time in not in range -86400 seconds to +86400 seconds then

Raise constraint error
Else

Compute multiple of DURATION' SMALL not greater than
the elapsed time

Convert the result to duration
Return converted value

End if

10.18. To kernel-time I
10.18.1. Interface 5

Tokernel time (elapsed time) return kernel-time

or _

Tokernel time (epoch time) return kerneltime

10.18.2. PDL

Convert argument to kernel time
Return converted value

II
V
I

72CMU/SEI-89-TR-1 9 1

I
I

11. Time Management
+---

I I
+----------------------------------I A'djust Zltapsed Timae II Ajut lpsd im+----------------------------------

II
--------------------------------- +
I Adjust Zpoch Time I
+----------------------------------

II

I Read Clock I

--------------------------------- +I +------------------------------------
I Synchronize I*
+----------------------------------

I * Atomaic operation
+---

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
21. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 12.

I! See Chapter 6 for a detailed discussion of the implementation of synchronize.

I
£
£

I
I
I
U
U CMU/SEI-89-TR-.19 73

I

11.1. Adjust Elapsed Time

11.1.1. Interface
adjustelapsedtime (adjustment) 3

11.1.2. PDL
If adjustment would result in a negative time of day then I

Raise illegalelapsed time exception
Else

adjust-elapsed time (adjustment) via timekeeper
End if

11.2. Adjust Epoch Time

11.2.1. Interface I
adjust_epochtime (new time of day) i

11.2.2. PDL
If the new time of day is meaningless (i.e., less than zero) then

Raise illegaltime of day exception
Else if the new time of day has already occurred then

Raise okbut time aleadypassed
Else

reset epoch time (new time of day) via time-keeper
End if

11.3. Read Clock i
11.3.1. Interface
readclock return current time of day I

11.3.2. PDL 1
return gettime via Clock.get time

11.4. Synchronize

I
I

74CMU/SEI-89-TR-1 9 n

11.4.1. Interface
synchronize (timeout, resunptionypriority)

1 11.4,2. PDL
Allocate synchronization bus
If allocated then5 Read current time of day

Send current time of day to all other nodes
Else

Set the excepti.on-name to sync "npyrogressg Schedule (new priority => resumption priority)
End i.f

CM/E-IT-97

I
I

12. Timeslice Management
+---
II

+---------------------------------+I Set Timelice I
+----------------------------------+ ii
-- - - - - -- - - - - -- - - - -

I Xnable Time Slicing I

+----------------------------------

I Disable Tim Slicing I

+----------------------------------I I1
+---

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
18. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 9.

iI
I
I
I
|
I
I
I
I

76 CMUISEI-89-TR-19g I

1
U

12.1. Set Timeslice

This primitive does not affect the currently pending slice expiration event. The next slice
event uses the new slice quantum.

12.1.1. Interface

5 Set-timeslice (new quantum)

12.1.2. PDL

If illegal quantumenabled then
If the new_quantum < minimum time-slice then

Raise illegal_quantum
End if

End if

1 If the newquantum < minimum time-slice then
Set timeslice duration :- minimum time slice

Else
Set timeslice duration :- new quantum

End if

112.2. Enable Time Slicing

3 If time slicing is currently enabled, then this primitive performs no action.

12.2.1. Interface

Enabletimeslicing

1 12.2.2. PDL

If time slicing_enabled is false >
Set time slicing_enabled to true
If the currentrunningprocess is preemptable =>

Set slice-event-id :- Insertevent (slice expiration)
End if

Else
Null

End if

9
U
I
I CMU/SEI-89-TR-1 9 77

12.3. Disable-time-slicingI

12.3.1. Interface
Dsbetime-slicing3

12.3.2. PDL
if time slicing_efnabled is true =

Se t tmesliciLng_enabled to false
Remove-event (slice-event id)

ElseI
Null

End if

78 CU/SE-89-R-U

3
I

13. Tool Interface
+---

I I
(Process Attributes

I (Mmssage Attributes

(Message Contents

(message Length

+----------------------------------
I Begn Collection I

+----------------------------------
ICease Collection I

--------------------------------- +

+----------------------------------

I Read Process Table IS+---------------------------------
+----------------------------------
I Read Interrupt Table I
+----------------------------------I +--

For a description of the functionality of this pacKage, see Kernel Facilities Definition, Chapter
23. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 14.

5The toolinterface package defines the user visible access to the Kernel's internal
functioning. Three types of per-process attributes are available:

£ 1. process attributes
2. message attributes3 3. message contents

Each of these attributes is defined in more detail below. This package simply turns on and
off the collection of tool data; it does not perform any of the actual collection or p,,,:zessing.
Additional information on the collection of tool interface data can be found in Chapter 14.
The format for a tool interface message is shown in Table 4.

I CMU/SEI-89-TR-19 79

I
I

13.1. Process Attributes

13.1.1. PDL

type process attributesentry is record
id: process identifier; I
state: process state;
timestatechange: epochtime;
currentypriority: priority; n
current-Preemption: preemption;
alarm pending: boolean;
primitive identity: Kernel_primitive nametype;
primitive returnstatus: kernelexceptions;

end record; g
13.2. Message Attributes I
13.2.1. PDL

type messageattributesentry is record
senderyprocess id: fullyprocess id;
receiverprocessid: full yrocess id;
message_length: message_length_type;
message_tag: message_tag_type;
timeKernelgotmessage: epoch-time;end record; I

13.3. Message Contents I
13.3.1. PDL

type message_contents type is array (hwnatural range <>) of hwbyte; U
13.4. Message Length £
13.4.1. PDL 3

messagelength: array (range of per-process attributes)
of messagelengthtype; I

I
60 CMU/SEI-89-TR-1 9 1

I
I

13.5. Begin Collection

13.5.1. Interface
procedure begincollection (process on which to start collecting data,

message tag for this information,
type of information to collect)

1 13.5.2. PIL

If the process id of the process to monitor is bad then
Ignore the request

Else

Mark the tool interface as enabled for the process
Log the tool process
Log the message tag

End if

13.6. Cease Collection
13.6.1. Interface

procedure endcollection (process on which to stop collecting data,
type of information to stop)

313.6.2. PDL
If the process id of the process to monitor is bad then

Ignore the request
Else
Clear the tool process
If none of the individual tool attributes are still active then
Mark the tool interface as disabled (if none of the individual

End if
End if

13.7. Size of process table

13.7.1. Interface
Function size. f_process.table

return numberof entr-._ in processtable

I
I
1 CMU/SEI-89TR-1 9 81

-- ,, ,,

I

II

I
I
I
I
I
!
I
I
I
i
I
I
1
I

82 CMU/SEI-89-Tfl-10 9 I

I
a

13.8. Read Process Table
This operation is atomic so that a time-consistent snapshot of the Process Table is obtained.

513.8.1. Interface
procedure readprocess_table (the user's process table buffer,

the last entry filled in by the copy)

13.8.2. PDL
Begin atomic

Initialize a process table iterator
While there are more entries in the process table loop

Get the next entry in the process table
Store it in the caller's copy

End loop
Mark the end of the process table

End atomic

I 13.9. Read Interrupt Table

13.9.1. Interface
procedure readinterrupt table (the user's interrupt table buffer)

13.9.2. PDL

3 Copy the interrupt table for Kernel space to user space

I
I

I

I
I CMU/SEJ-89-TR-1 9 83

I
I
I
I
I
I
I
I
I
I
U
I
I
I
1
I
1
1

84 CMU/SEI-89.TR-1 9 1

I
I

III. Core Kernel

I The packages described in this part are not directly visible to application-level code; but theyU are the means by which the functionality of the visible interface is achieved.

I
I
I
I
I

I
I
U

I

I
I
I

I CMUISEI-89-TR-1 9 85

U
I

1. Bus I/O

I I
(Datagram Representation)

- I
4 "

- I I
+ +

(Kernel IUatm
(enlTag*

+ I

I Initialize I

I Send Process Datagram I

I Send Kernel Datagram I i

I Receive Blind Message I

I Multi Send I

This package is Kernel's interface to trae network processor (NProc). As such, it is
responsible for formatting datagrams for transmission over the network and receivingI
datagrams transmitted by other nodes in the network.

There are five message types in the system (the exact format of each of these messages is
in Appendix B):

* Non-Kernel message: A datagram sent by a non-Kernel device. This is a
user-level operation and the data contained in such a message is deposited in
the allocated receivers message queue.

" Blind send: A datagram sent without expectation of message receipt
confirmation. This is a user-level operation and the data contained in such a
message is deposited in the specified receiver's message queue.

* Acknowledged Send: A datagram sent with the expectation that an
acknowledgment will be returned. This is a user-level operation, and the data
contained in such a message is deposited in the specified receiver's message
queue. 3

86 CMU/SEI-89-TR-19 1

I
I

* Kernel Message: A datagram sent by one Kernel to its counterpart on another
node. These messages are handled entirely within the receive datagram
interrupt handler of the receiving Kernel. Associated with these messages is a
set of message tags that supply additional information:

I • Ack: user message received correctly by destination process (sender's
process ID and message id are part of the message contents).

- Nak: user message not received by destination process (sender's
process ID and message id are part of the message contents).
• Nak - Process Dead: user message not received by destination process

because it has terminated (sender's process ID and message id are part
of the message contents).

- Info - Process Dead: Kernel or user message not received by destination
process because it has terminated.

• Kill Process: a request to terminate a locally executing process.
* Network Failure: a fatal communication error has been detected.3 Initialization Complete: a node in the network has completed its

initialization sequence.
- Process Created: a node in the network has successfully created a local

process.

* Initialization Protocol Message: a datagram sent during initialization by one
Kernel to its counterpart on another processor. These messages are deposited
in the "message queue" of the Main Unit for processing by the Kernel primitives
that implement the initialization protocol. Associated with these messages is a
set of message tags that supply additional information:

* Master Ready: the Master processor is ready to commence the3 initialization protocol.
" NCT Enclosed: a subordinate processor has sent its NCT to the Master

Processor.
- Go Enclosed: the Master processor has told a subordinate process to

commence process creation.
i Go Acknowledgment: a subordinate procL cso' has acknowledged its

receipt of the Go message.

The appearance of initialization complete and process created in the Kernel
message tags and not as initialization protocol message tags requires some elaboration.
First, while these tags are associated with initialization messages, their receipt by a

processor does not correspond with a waiting primitive call by the recipient (as does the
handshaking implemented by the initialization protocol messages). Second, since there is
no corresponding primitive to capture these messages and process them; this processing is
best done in the message interrupt handler of the receiver. Finally, this partitioning
facilitates subsequent implementation of dynamic network configuration (at the process and
processor levels).

I
I CMU/SEI-89-TR-1 9 87

I
I

1.1. Initialize

1.1.1. Invocation
InitializeI

1.1.2. PDL
Bind Receive datagraminterXrUpthandle: to the I
interproces so: interrupt

Enable interprocessor interrupts

1.2. Send Process Datagram I
1.2.1. Invocation

send processdatagram (1
message receiver
message operation,
timeout, 3
message tag,

message identifier,
message length,
message text)

1.2.2. PDL 3
Allocate an empty datagram
If a datagram is available then

If called from an interrupt handler then
Set sender's pid to null

Else
Set sender's pid to current_runningprocess I

End if

Fill in datagram header information from parameters
Copy from the sender's buffer to the datagram's buffer
Enqueue the datagram on the output queue

Else
Null... do nothing

End if

1.3. Send Kernel Datagram I

I

88 CMU/SEI-89-TR-1 9 5

I
£

1.3.1. Invocation
send kernel datagram (

message sander,5 message receiver,
message operation,
timeout,
message tag,

I message identifier,
message length,
message text)

1.3.2. PDL
If receiver is a non-kernel device then

Return...Kernel messages don't go to non-Kernel devices
End if
Allocate an empty datagram
If a datagram is available then

If called from an interrupt handler then
Set sender's pid to null

Else
Set sender's pid to current_runningprocess

End if
Fill in datagram header information from parameters
Copy from the sender's buffer to the datagram's buffer
Enqueue the datagram on the output queue3 Else
Null... do nothing

End if3
1.4. Receive Datagram I/H

3 1.4.1. Invocation
3 N/A

1.4.2. PDL
3 While there are messages waiting for the K-Proc

Dequeue a message
Case message operation is

When non-Kernel message ->
Receive-non kernel_message

When blind send ->
Receiveblindmessage

When acknowledged_send =>
Receiveacked_message

When kernel manage ->
Receivekernelmessage

U CMUISEI-89-TR-19 89

I
U

When initialization protocolmessage ->

Indicate receiver has receive pending
ReceiveBlind_message

When syncyprotocolmessage ->
null -- these are handled explicitly elsewhere...

End Case
End if

End Loop 3
1.5. receivenonkernelmessage

1.5.1. Interface
receivenonkernel message (incoming datagram) I

1.5.2. PDL 3
Perform error processing for:

No process assigned to the non-kernel device for receiving messages
Receiver process is dead
Receiver message queue is full

Enqueue datagram on the receiver's message queue
If receiver is waiting then I

Schedule (new state => suspended)
Else

Null I
End if

1.6. Receive Blind Message I
1.6.1. Invocation

receiveblind_message (incoming datagram)

1.6.2. PDL

If the receiving process is dead then
If the sender is not an interrupt handler then I

Send a Kernel-to-Kernel informational message back to the
sender's node that the receiver is dead

End ifI
Free up the datagram buffer

Elsif the receiver's incoming message queue is full then
Indicate the receiver's message queue has overflowed I
If receiver's overwrite rule is drop newest message then

Free up the datagram buffer
Else U

90 CMU/SEI-89-TR-19 I

U
I

Null... do nothing
EsEnd if
Else

Enqueue a datagram on the receiver's msg queue
If receiver is waiting then

Schedule (newstate => suspended)
End if

3 End if

1.7. Receive Acked Message

1.7.1. Invocation

3 receiveackedmessage (incoming datagram)

51.7.2. PDL

If the receiving process is dead then
If the sender is not an interrupt handler then

Send a Kernel-to-Kernel informational message back to the
sender's node that the receiver is dead

End if
Free up the datagram buffer

Elsif the receiver's incoming message queue is full then
Indicate the receiver's message queue has overflowed
If receiver's overwrite rule is drop newest message then

Free up the datagram buffer
Else

Null... do nothing
End if

Else
Enqueue a datagram on the receiver's mug queue
If receiver is waiting at a receive message call and

it is also blocked then
Enqueue datagram on receiver's msg queue
Send an acknowledgment to the sender
Schedule (new state => suspended)

Elsif the timeout is less than zero then
nqueue datagram on receiver's sag queue

Indicate receiver is has a send with ack pending
Elsif the timeout is zero then

Send a negative acknowledgment to the sender

I Free up the datagram buffer
Else

Try to set a time event
If no event was set then

Send a negative acknowledgment to the sender
Free up datagram

Else nqusue datagram on receiver's message queue

I CMU/SEI-89-TR-19 91

U
I

Save pointer to datagram so it can be removed if the event
expires.
Indicate the sender has a send with ack pending

End if
End if

End if

1.8. Receive Kernel Message I
It is possible for a process to perform a sendmessageandwait operation and then to
terminate before the acknowledgment is received. Since all operations involving a dead
process are meaningless, all acknowledgments to a dead process are ignored. Also, the
Kernel makes no attempt to inform other Kernels of this condition, preferring, instead, for a
process to make a subsequent attempt to communicate with the dead process.

Also note that it is possible for two (or more) different processors to create the same 3
process, but that condition is not detected by this procedure. The reasons being that this
condition is caught either:

" When the second processor attempts to create the process, for the case when
the two creations don't occur simultaneously.

" When all the processors have signaled initialization complete, for the case
when the two creations occur simultaneously.

The situation is easy to detect, since a remote process should not have any Scheduler state
on the local processor.

1.8.1. Invocation 3
receiveKernelmessage (incoming datagram)

1.8.2. PDL I
Obtain the message tag from the message header
Case message-tag is
When ack -> I

If the receiver (the message originator) is waiting for an
acknowledgment and the message id matches then

Schedule (new state => suspended)
End if

When nak ->
If the receiver (original msg sender) is waiting for an n

acknowledgment and the message id matches then

Setup to raise the No_Message_Received exception
Schedule (newstate => suspended) 3

End if
When nak - process dead ->

Indicate that the specified process (process to which the msg was 3
sent to) is dead.

92 CMU/SEI-89-TR-19 I

U
I

If the receiver (original msg sender) is waiting for an
acknowledgment and the message id matches then

Setup to raise the Receiver Dead exception
Schedule (new state => suspended)

End if
When info - process dead ->

Indicate that the specified process is dead.
When kill process ->
Kill the specified process

When Process Created ->

Obtain process name from message
If the process has not already been declared then

Do the processing for declaring the process
End if
Map the global and local identifiers

When Initialization Complete ->
Set the processor identifier
Indicate initialization complete

When Netwo'rk Failure ->

Null
End Case

31.9. Multi Send

This procedure is used only to broadcast "Network Failure" messages to all the nodes
3 capable of receiving the message.

1.9.1. Invocation
£ multi-send (

message sender,
message operation,
message tag,
message length,
message text)

1.9.2. PDL
For all of the nodes that are not either the local node and

are Kernel devices loop
Send a kernel datagram with the provided message tag3 End loop

I
I
I CMU/SEI-SB-TR-1 9 93

m
I

2. Clock
+---

+----------------------------------
Start clock IIU

+----------------------------------

+----------------------------------

-- I
--------------------------------- +I Got tilap e I

+----------------------------------

+----------------------------------

I Adjust epoch time I
+----------------------------------

+---

The real-time clock is implemented using one of the timers available on the MZ8305 board,
see Part Vill for a more detailed discussion of the actual timer hardware. Using this timer

1. Hardware: the lower 24 bits of the time and is updated autonomously by the
timer hardware at a 2 las rate.

2. Software: the u mper 40 bits of the time and is updated by the clock interrupt
handler every 2~ clock ticks, i.e., every 16 seconds.

When the clock is read, the low 24 bits of the time are read from hardware and added to the
upper 40 bits to produce the full 64-bit time value. See Chapters 10 and 7 for additional
time details.

9I
!
I

94CMUISEI-89-TR-1 9 5

I
I

2.1. start-clock

2.1.1. Interface
3 startclock (current time of day)

2.1.2. PDL

Save the base epoch time
Bind the interrupt handler for the clock3 Initialize the timer that functions as the clock

3 2.2. stopclock

2.2.1. Interface

3 stop_clock

3 2.2.2. PDL
Disable the interrupt of the clock's timer

2.3. get time

3 2.3.1. Interface

gettime return current time of day

2.3.2. PDL
Get a copy of the upper 40 bits of the elapsed time
Read the lower 24 bits frcm timer (clock counter register
If the elapsed time has rolled over then
it happened somewhere between reading the hardware and software portions
of the current time...so, assume that the call hit the rollover point
exactly and return the current value of elapsed time as the current time

return the current time of day (as computed by the clock interrupt handler)
Else, there was no roll over, so

Convert the timer count into microseconds
Add it into the 64-bit representation of time
Return the current time of day

IEnd if

I
I CMU/SEI-89-TR-1 9 95

I
2.4. adjust elapsedtime

2.4.1. Interface
adjust elapsed time (adjustment) 3

2.4.2. PDL
Read the current software time I
Compute new time*:= current software time + adjustment
Begin atomic

Read the curreat software time again
If the two software times are not the same then
a clock interrupt has occurred

Compute new time c= Current software time + adjustment
End if
Save the new software time

End atommic 3
2.5. adjust epochtime

2.5.1. Interface
adjust epochtime (new time of day) 3

2.5.2. PDL
Compute delta time := new time of day -

time of day when clock was started
Adjustelapsed time by the delta time
Reset the the current time of day to the new time of day

2.6. clockinterrupt handler I
2.6.1. Interface 3

clockinterrupt_handler

2.6.2. PDL 3
Acknowledge the timer interrupt
Increment the current time of day 3

I
I

96 CMU/SEI-89-TR-1 9 1

U
I

3. Context Switcher
+---
II

+----------------------------------I Save Context I
4.------------- ------------------

+----------------------------------

II
I Resume- Processl I

I Swlitch Processes I

I---
This package is hardware-dependent and compiler-dependent. It must understand the
register structure of the underlying hardware and the conventions used by the Ada compiler.
This package is responsible for providing the mechanisms needed to save a process
context (when an interrupt occurs or a context switch occurs) and to restore a saved
process context (when the Scheduler selects a process for execution).

I
I
I
!
I
I
I
I
I
ICMU/S EI-89-TR- 19 97

I'

I3.1. Save Context

3.1.1. Interface
Savecontext (process identifier) 3

3.1.2. PDL
Set Context saved field of process table to by_call I
Pop PC off interrupt stack
Copy PC into current running process's context save area
Pop status register off interrupt stack I
Copy status register into current running process's context save area
Copy live registers into current running process's context save area

3.2. Resume Process

3.2.1. Interface
Resumecontext (process identifier) i

3.2.2. PDL

Copy live registers from CURRENT RUNNING PROCMSS's context save area
Set saved context to none
If an exception is pending for this process >

Raise exception via Exception Raiser
Else

Execute return instruction to resume process
End if

3.3. Switch Processes I
3.3.1. Interface I
Switchprocesses (old process identifier,

new process identifier) 3
3.3.2. PDL
Savecontex- (old process identifier) i
Set current running process to new process identifier
Resumeprocess (new process identifier)

I
98 CMU/SEI-89-TR-1 9 1

I
I

4. ExceptionRaiser
+---I I

+----------------------------------
I Raiso xeption I

+---

This package interfaces with the Ada compiler primitives that raise and propagate
i exceptions.

All the possible Kernel exceptions are contained in package Kernelexceptions and3 documented in the Kernel User's Manual.

9
I

I
£

I
I
I
U

I
I CMU/SEI-89-TR-1 9 go

I
I

4.1. Raise Exception 1
4.1.1. Interface

Raise exception (exception name) 3
4.1.2. PDL

Case Exception name is
When ... ->

Raise indicated exception
When ... ->

I
End case 3

I
I
I
I
I
I
U
I
I
I

100 CMU/SEI-89-TR-19 I

U
U

5. Internal Process Management

I I3 --------------------------------

I Got next.preose zimb.e I
+---- -------------------------- +II

S---------------------------------
I Got null_yproess numrber I

+----------------------------I

I Czeateointernal.prooess I

I Create kernolrprooesses I

* ---

This package collects together a number of loosely related activities that support process
3 creation.

While the process identifier is used to reference a process locally, it is not suitable for use in
identifying processes remotely (because it is an access type). Thus, each process has a
locally unique process number (a 16-bit integer), that, when appended to the node number
where the process is executing, gives a globally unique 32-bit process index. These process3 numbers are created and doled out by this package.

Second, each Main Unit is treated by the Kernel as an executing process. Since the user
does not explicitly create them as such, they are "created" internally by the Kernel during
initialization. This allows all the Kernel facilities built to support user processes to be applied
in support of the Main Unit and processor initialization.

Finally, one additional internal process is created: a time burner. This process has a priority
lower than any user process and can only run when other user processes on the node are
blocked or dead. This process allows for a more efficient scheduling algorithm, since there
is never a situation where no process is eligible to run. It also allows the user to put in place
code that measures idle time on a processor or runs some other appropriate background
work.

II
I
U CMU/SEI-89-TR-1 9 101

U
U

5.1. Getnextjprocessnumber 1
5.1.1. Interface

get_nextyprocessnumber return process number

5.1.2. PDL
Compute the next available process nuwber I
Return the value to the caller
Exception

when any exception occurs U
propagate the exception

5.2. Get_nulIprocess_number

5.2.1. Interface U
get_nullprocss_number

return process number for null process

5.2.2. PDL

Return the proces3 number reserved for the null process

5.3. Createinternalprocess U
This procedure does an abbreviated declare and create for processes that the Kernel needs

to create internally. I

5.3.1. Interface I
create internal-Process

(node where the process resides
process number
local process indicator
process name
initial process priority
code address)
return process identifier

5.3.2. PDL
Reference declare_process and createprocess for a detailed exposition 3
on the functioning of this code. The primary differences are that the W
code assumes sufficient space exists to create the processes and
it has preset values for the user options.

102 CMU/SEI-89-TR-19 I

U
U
g 5.4. Createkernel-processes

5.4.1. Interface

3 c.eatekernelprocesses

5.4.2. PDL
For each node in the network loop

If the node is this node then
Create the local Main Unit

Else
Create the remote Main Unit

End if
End loop

i Create the time burner process

1
U
I
U
I
I
U
I
U
I
I CMU/SEI-89-TR-1 9 103

6. Kernel Interrupt Management
+---

I I
+----------------------------------

I nable I
+----------------------------------

+----------------------------------
I Disable II
+----------------------------------

+----------------------------------
I nabled I

4---I

+----------------------------------
I iuaeInerp I

+----------------------------------

+----------------------------------

+----------------------------------

I Initialize I

+---

104 MU/SI-89TR-I

I
U

6.1. Enable

6.1.1. Interface
nnable (interrupt name)

6.1.2. PDL
Set interrupt state in the interrupt table to enabled
Set interrupt's entry in the Kernel interrupt vector to point to
the user-supplied interrupt handler

1 6.2. Disable

36.2.1. Interface
Disable (interrupt name)

U 6.2.2. PDL
Set interrupt state in the interrupt table to disabled
Set interrupt's entry in the Kernel interrupt vector to point to
the null interrupt handler

6.3. Enabled

U 6.3.1. Interface
Enabled (interrupt name)

return boolean

6.3.2. PDL
Return the interrupt_state field of the interrupt table

16.4. Simulate Interrupt

3 6.4.1. Interface
Simlateinterrupt (interrupt name)

I
I
3 CMU/SEI-89-TR-1 9 105

U
U

6.4.2. PDL
Set interruptsource in the interrupt table to internal 3
Increment interrupt_nesting level
Begin atomic

Perform an indirect call of the interrupt handler pointed
to by the interrupt's entry in the interrupt table

Exception
when others ->

handle all exceptions, taking no action (to simulate the
effect of an unhandled exception in a real interrupt
processing) I

End atomic

Decrement the interrupt_nesting level 3
Set the interrupt source to be External
If the interrupt can preempt then

Schedule U
Else

return to the caller
End if 3

6.5. Bind Interrupt Handler 3
6.5.1. Interface

bind interrupthandler (interrupt name,
address of interrupt handler procedure,
interrupt can cause process preemption) 3

6.5.2. PDL
Insert interrupt name into Interrupt table I
Store handler address in the interrupt table
Store value for canpreempt in the interrupt table
Set handler state to bound in the Interrupt table I
If the interrupt canpreempt then

Call machine-dependent routine to bind a "slow" interrupt
Else

Call machine-dependent routine to bind a "fast" interrupt
End if 3

I
I

106 CMU/SEJ-8g-TR-1 9 3

I
I

7. Kernel Time
4--
I I

(Kernel time

Zero keirnel time)
(InteGraldurat:ion)
Ticksxpersecond)

Seconds (2)
I Milliseconds
Microseconds

""(2)
I "4-" (2)

-(2)

Ifl

III
-- -- - -- -- - -- -- -

I
I
U
I

I
I
I
I CMU/SEI-89-TR-1 9 107

I
U

7.1. Seconds

7.1.1. Interface
Seconds(an Ad duration) return kernel time

7.1.2. PDL

Multiply the Ada duration by 1_000 000 i
Divide result by 16384 -- DURATION'SMALL
Return resulting kernel time

7.1.3. Interface
Seconds(an integral duration) return kernel-time 3

7.1.4. PDL 3
Multiply the Ada duration by 1_000_000
Return resulting kernel time

7.2. Milliseconds

7.2.1. Interface

Milliseconds (integral milliseconds) return elapsedtime 3
7.2.2. PDL
Multiply the integral milliseconds by 1_000 1
Return resulting kernel time I

7.3. Microseconds

7.3.1. Interface U
Microseconds (integral microseconds) return elapsedtime 3

7.3.2. PDL
Sign extend the integral microseconds to 64 bits U
Return resulting kernel time

1

106 CMU/SEI-a9-TR-1 g I

1
1

i7.4.9 +"

7.4.1. Interface3 "+"1 (kernel time) return kernel

7.4.2. PDL

Return argument as result

37.4.3. Interface
"+" (kernel time, kernel time) return kernel time

17.4.4. PDL

Add low order 32 bits unsigned
Add with carry high order 32 bits signed
Trap on hardware overflow
Return 64 bit result

g 7.5."-

7.5.1. Interface

3"-" (kernel time) return kernel

7.5.2. PDL

Negate 64 bit argument and return

I 7.5.3. Interface
"-" (kernel time, kernel time) return kernel time

17.5.4. PDL

Subtract low order 32 bits unsigned
Subtract with borrow high order 32 bits signed
Trap on hardware overflow
Return 64 bit result

I
I
ICMU/SEI-89-TR-1 9 109

U
I

7.6.

7.6.1. Interface
"1*" (LBS -> kernel time, RBS => integer) return kernel time

7.6.2. PDL

If RES < 0 then I
LES : -LES
RES : -RBS

End if
Multiply low 32 bits of LBS by RES unsigned
store the 64 bit result

Multiply high 32 bits of LBS by RES signed
store the 32 bit result

Trap on overflow
Add two partial products signed
Trap on overflow
Return 64 bit result

7.6.3. Interface I
"*" (LBS => integer, RBS => kernel time) return kernel time 3

7.6.4. PDL
As above, interchanging LBS and RES 3

7.7. "

"/" (LBS -> kernel time, RBS -> integer) return kernel time g
7.7.1. PDL

If RBS < 0 then
LBS : -LBS
RBS : -RBS

End if 1
Divide high 32 of LES by RBS signed, giving ql and rl

If high 32 bits of LBS < 0 then I
q1 :- q1 -1
rl :R ES + r

end if

Divide rl, LBS.low by RBS double length unsigned, giving qO and r0

110 CMU/SEI-89-TR-19 I

I
I

Return ql, qO as the 64 bit result

7.8. "<"

7.8.1. Interface
3 "<" (LBS -> kernel time, RES => kernel time) return boolean

7.8.2. PDL
If high 32 bits of LHS < high 32 bits of RHS then -- signed comparison

return true
Elsif high 32 bits of LHS > high 32 bits of RJS then -- signed comparison

return false
Else

If low 32 bits of LHS < low 32 bits of RKS then -- unsigned comparison
return true

Else
return false

End if
End if

7.9." -"

3 7.9.1. Interface

"<=" (LBS => kernel time, RES => kernel time) return boolean

3 7.9.2. PDL
If high 32 bits of LKS < high 32 bits of RHS then -- signed comparison

return true
Elsif high 32 bits of LKS > high 32 bits of RHS then -- signed comparison

return false
Else

If low 32 bits of LHS <= low 32 bits of RBS then -- unsigned comparison
return true

Else
return false

End if
End if

7.10. ">"

I
I
U CMUISEI-89-TR-1 9 111

U
I

7.10.1. Interface
">" (LBS -> kernel time, RBS -> kernel time) return boolean I

7.10.2. PDL
If high 32 bits of LES > high 32 bits of RHS then -- signed comparison

return true
Elsif high 32 bits of LBS < high 32 bits of RES then -- signed comparison

return false
Else

If low 32 bits of LBS > low 32 bits of RHS then -- unsigned comparison

return true

return false
End if

End if

7.11. >-

7.11.1. Interface 3
">-" (LBS -> kernel time, RES -> kernel time) return boolean

7.11.2. PDL I
If high 32 bits of LES > high 32 bits of RES then -- signed comparison

return trueI
Elsif high 32 bits of LHS < high 32 bits of RES then -- signed comparison

return false
Else

If low 32 bits of LBS >= low 32 bits of RHS then -- unsigned comparison
return true

Else
return false I

End if
End if

I
U
I
I
I

112 CMU/SEI-89-TR-19g I

I
I

8. Network Configuration
+---

I I

II
U +------------------------------------

I get processor id I
+-------------------------------I I

+---

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
15. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 6.

1I
U
I
I
U
I
I
I
I
I
I CMUISEI-89,TR-1 9 113

U
I

8.1. getprocessorid

8.1.1. Interface I
get.processox.id (nods address) return NCT index

8.1.2. PDL
For each node in the NCT loop

If the addzess of the node in the one in question then

Return the NCT index of the node
End if 3

End loop

8.2. NCT I
The NCT (shown in Figure 17) is discussed in detail in both [KFD 89] and [KUM 89].

I
I
I

Logical Physical Kernel Needed Alocated Initialization Initializatlon

Name Address Device To Run Process ID Order Complete

I
I

Figure 17: Network Configuration Table 3

I
I

114 CMU/SEI-89-TR-19 3

I
I

9. ProcessEncapsulation
+---

I I
I Dumm Call ram II

+---III
This package contains the procedure that handles unexpected terminations of Kernel
processes. There are two kinds of unexpected terminations:

1. Termination: The process simply completes its processing and reaches its
final end statement. When this occurs, the Kernel terminates the process.

2. Unhandled exception: an exception occurs in a process, but no piece of code
within the process handles that exception. When this occurs, the Keme
terminates the process and optionally issues a diagnostic message.

II
I
I
I
I
I
I
I
I

I CMU/SEI-89-TR-1 9 115

I
I

9.1. Dummycallframe

9.1.1. Interface
dumycall_frame (process identifier)

9.1.2. PDL

Set initial scheduling parameters I
Insertpyrocess into Scheduler
Begin atomic

Perfozm indirect call of user process code
Die

Exception
when others Z>

If traceback enabled then
Print stack traceback message

End if
Die

End ato ic
Schedule 3

I
I
I
I
I
I
I
I
I

116 CMU/SEI-89-TR-19g I

I
I

10. Process Index Table
+---

I II +------------------------------------
I Closx.proes. index I
+----------------------------------

+----------------------------------
I getpzooae- _identifier I
----- --------------------IU +------------------------------------
I get...procese-indez I

+----------------------------------

II

--

I aetprces..indexI

As discussed elsewhere, a process had two internal handles:

3 1. Process identifier: the access variable of the process table entry for the
process.

2. Process index: the globally unique identifier for the process.

This package encapsulates the mapping between the two handles. The mapping table is
built dynamically during processor initialization by Main Unit interaction with the Kernel.

1
I
I
I
I
I
I
I CMU/SEI-89-TR-1 9 117

I
I

10.1. Clear_processindex

10.1.1. Interface
Clearprocess_..ndex (process index)

10.1.2. PDL
Remove a process identifier from the mapping table by setting the I
entry in the mapping table to null I

10.2. Getprocessidentifier

10.2.1. Interface I
get process identifier (process index)

return process identifier

10.2.2. PDL
Return the process identifier contained in the mapping table for
the requested process index I

10.3. getprocessindex

10.3.1. Interface
getyprocess index (process identifier)

return process index

10.3.2. PDL
Return the process index from the process table for this process I

10.4. set_processindex

10.4.1. Interface U
setprocess index (process identifier,

Iprocess index)

I

118 CMUISEI.89TR-1 9 I

I
I

10.4.2. PDL
Log the process identifier in the mapping table at the
process index positionI

10.5. Mapping
I The mapping table is a simple table indexed by (bus address, process number) and internal

to the package. Each entry in the table holds the process identifier (i.e., the index into the
local process table for that process). Thus, when a message arrives at a node, the (bus
address, process number) pair of the receiving process bundled in the datagram is used to
index the mapping array and retrieve the index into the process table. The mapping table is3 shown in Figure 18.

I
I
U
I
I
I
I
I
I
I
I
I CMU/SEJ-89-TR-1 911

Proc ess !abl

I
PrOcesS table,,r

Prev r~ces-10nextProcess table entry

0O. Prev Prce$$-10 next3

PProcess attributesPr~~s-InexPIOCSS-attrbes

nlodnumber

Process nube (Omao-O~
do 6~I~

F~u ra je $ 8:es Pr c s MapumgTbeer

c~mmnicai~n-ttriutI

I
U

11. Process Table

U The process table is the primary data structure of the Kernel. It holds all the Kernel state
related to a process. The process table is structured as a doubly linked list, shown in Figure3 11, where the data in the linked list is a pointer to a process information record, i.e., a PID.
This gives the Kernel quick access into the process data, the ability to traverse the entire
process structure and the capability to expand in the future. It is documented fully in the
package specification and discussed in more detail in [KUM 89].

process-table

proceslafedy process table entry

pry rceSID next . . . prey procesajO1 next

I _-I

I process _atributes process anributes

schedule_attributes schedule_aflnbutes

ncommunicat ionattrnbutes communicationaifrtx

informalon- pendng.civity_atlribules pending ,,tivlyatributes

send_w_ACK attributes send w ACK_attnbutes

semaphore_atribues semaphore-attributes

Si toolveterlace-attribues tool intedace artbutes

process_informarion psnC S._onmation
recordfor Merlin recrdflor: Vivian

I Figure 19: Process Table

One part of the process table that needs elaboration is the pending activity attributes record.

This structure is responsible for maintaining the state of a process when it is blocked and no
longer under the control of the Scheduler. There are five pending activities encapsulated by3 this structure:

1. Claim pending: the process is currently blocking on an unsatisfied claim
operation.

2. Receive pending: the process is currently blocked waiting for a message to
arrive.

3. Wait pending: the process is currently blocking waiting for the passage of
some period of time.

4. Send with ACK pendhig: the process is currently blocked waiting for the arrive5 of a message acknowledgment.

I CMU/SEI-89-TR-19 121

I
I

5. Nothing pending: the process is not blocked. It is either dead or eligible to run
(and thus under the control of the Scheduler again).

Figure 11 shows these pending activity states and the transitions that occur between.

Claim I
Pending

us El 51 QI
I ;a

I 1 I

E IOA la r m e x ire -s A la r x-' " re s

Send with IACKNAK received Nothing ecetve tinmout expires Receive
ACK pending Send message and want Pending I Message amves PendingR eceive rnssage 4

II

- Asynchronous transilion

1;R Synchronous transition

Wait
Pending I

Figure 20: Pending Activity StatesI

I
I
I
I

122CMU/SEI-89-Tfl-19 I

I
U

12. Scheduler
4---

I (Current Running Process

+----------------------------------
I Initialize I

I+ +

I Insert Process I*

* +-----------------------------------
I Remove Process I*
+----------------------------------1 II +----------------------------------
I Schedule I*

+----------------------------------+I4I

+----------------------------------
I Schedule ih 1**
+----------------------------------

Atomic operation
* Atomic by virtue of being used

exclusively from interrupt level I
---I

The Kernel Scheduler manages Kernel processes. In particular, the Scheduler, and it alone,
makes the decision to resume a specific process (i.e., change the state of a process from
suspended to running).

The Scheduier knows only about processes that are running or suspended. All
processes in other (i.e., blocked or dead) states are maintained outside the knowledge

and control of the Scheduler. There are three reasons for this:

1. Running and suspended are the only states relevant to the functioning of
the Scheduler.

2. A blocked process is unable to run until the corresponding unblocking event
occurs, thus there is no reason for the Scheduler to maintain any information
about the process.

3. This facilitates replacing the default Scheduler with one of the user's choice.

I Thus, when a process is not blocked or dead (i.e., it is capable of being run) it is inserted
into the Scheduler. When a process blocks or dies, it is removed from the Scheduler.

I All Kernel primitives that could cause a process to unblock (and consequently result in a
context switch) end with a call to schedule.

I Internally, the Scheduler maintains a run queue ordered by priority. The resumption priorty

CMU/SEI-89-TR-19 123

I
I

of a suspended process is the priority seen by the Scheduler; any priority of the process
before an invocation of the relevant Kernel primitive is no longer germane. 3
Rules Implied by Kernel Requirements

1. Only the current running process and the set of suspended processes are
available for scheduling.

2. A process of higher priority must be scheduled in preference to one of lower i
priority ([KFD 89] Chapter 18).

3. A suspended process of a given priority must be scheduled in preference to
one at the same priority whose timeslice has just expired ([KFD 89] I
Requirement 9.1.10).

4. If two or more processes change state at the same time (that is, at the same
slice), the changes happen simultaneously (that is, it cannot be the case that I
one process has changed state and can detect that another has not) ([KFD
89] Chapter 18).

Information Available to the Scheduler
The following information from the Process Table is used by the Scheduler: n

1. Process state
2. Process priority

3. Process preemption state
4. The name of any pending exception (if the process is in an error state)

Scheduling Events
The following lists all the Kernel primitives where the Kernel requirements imply a
scheduling action may occur: I

" Adjust elapsedtime

" Claim I
* Die
" Initialization Complete 3
" Kill
* Receive-message
" Release I
" Resetepochjtime
* Send_messageandwait
" Setprocesspriority
" -etprocesspreemption
" Synchronize I
" Wait

The following events may also cause the a scheduling action to occur: I

124 CMU/SEI-89-TR-19 I

I
I

" Expiry of an alarm
3 . Expiry of a timeout

" Expiry of a timeslice
* Expiry of a wait
* Preemptive interrupt

Obtaining a claimed semaphore
Receipt of a message

* Receipt of a message ACK or NAK

I Scheduler Rules
The following Scheduler rules are universally applied:

I 1. Scheduler order does not change spontaneously.
2. Scheduler ordering is decided by the rules:

a. Higher priority before lower priority
b. Prefer a process in an error state (to one in a normal state)
c. FIFO order otherwise

3. When two processes become unblocked simultaneously, the process that has3 been blocked longest is considered to become unblocked first.3

The following two examples illustrate the Scheduler's functioning. In Figure 21, the
application has called the wait primitive to block its own execution for one second (there are
no other pending events in this example). Then, Figure 22 shows the activities that occur
when the wait timeout occurs and the waiting process is selected for execution.I

I
I
I
I

I 3Note that two processes executing on the same processor cannot become blocked simultaneously.

I CMU/SEI-89-TR-19 125

I

1 Time Event IQueue

r I
SAttribute K iepe
,Modifiers Kee

5 Event

TimerI~I

Scheduler - I

Run Queue ProcessTable

1. Application issues a call to wait (one-second).
2. An insert-event call is made to create the event.
3. Update the time event queue.
4. Configure the event timer to generate an interrupt in one second. 5
5. Invoke the Scheduler to block the waiting process and select the next process

to run.
6. Remove the waiting process from the run queue. 3
7. Get the next process to run.
8. Save the context of the waiting process. 3
9. Restore the context of the next process run.

10. Scheduler transfers control to the resumed process.

Figure 21: Application Blocks

I
126 CMUISEI-89-TR-1 9I

I
I

I Event
1 - TimerI '71

I/I __Time_

Keeper

/3 ime Event
I Queue

I
Scheduler 18 Process

10~ Table

Run Queue

I
1. The wait timeout expires, and generates an interrupt.
2. The event interrupt_handler within the timekeeper fields the interrupt and

pulls the event at the head of the time event queue.
3. The process table is modified to reflect the occurance of the event.
4. The event interrupt_handler inserts the process into the Scheduler.
5. The Scheduler places the process back in the run queue.
6. The event interrupt_handler returns control to the Scheduler (rather than the

interrupted process)
7. The waiting process is now at the head of the run queue and selected to run.
8. Saved the context of the currently running process.
9. Restore the context of the waiting process.

10. Scheduler transfers control back to the waiting process.

Figure 22: Application Unblocks

I CMU/SEI-89-TR-19 127

I
I

12.1. Current Running Process

Visible value for Kernel primitives to use as identity of invoking process.

12.1.1. PDL U
Current running process: process identifier

12.2. Process Run Queue
The process run queue is structured as a series of run queues, one for each legal process
priority. At each priority is a singly linked list of suspended processes, where the link to the
next process in that queue is embedded in the process table.

The head pointer points to the first process eligible to run at each priority. The tail pointer
points to the last process eligible to run at each priority. The error pointer is ar auxiliary tail
pointer that points to the last process with a pending error eligible to run. Expressed as a
record, the process run queue would look like:

Type run_queueentry is record
head: process_identifier := null;
tail:- process-identifier : null;
error: processidentifier :- null;

End record;
runqueue: array (ST.priority) of run_queue_entry; 3

This arrangement is not implemented in this version because of the inefficiencies of the
compiler-generated code. Instead, the structure is represented by three arrays, each
accessing a single component:

run_queue_head: array (ST.priority) of proces_identifier
:= (others -> null);

run_queuetail: array (ST.priority) of process identifier
:- (others -> null);

run_queue.error: array (ST.priority) of process identifier
:- (others -> null);

Thus, the final incarnation of the process run queue is shown in Figure 23. 3

12.3. Getnext

This algorithm assumes there will always be a process to run somewhere in the run queue.
This assumption is assured by the presence of the timeburner process with a priority lower
than any user priority.

128 CMU/SEI-89-TR-19 I

3 Priority

1 ea Process c rcsI ~(Lowest tail__ _ _ _ _ _ _ _ _ _ _ _ _

priority) error

3 Highest
priority ero

headTieBrr
Highest

user tailI priority
+ 1 error

Figure 23: Run Queue

CMU/SEi-89-TR-1 9 2

I
I

12.3.1. Interface

get-next return next process eligible to run i
12.3.2. PDL

While we have not yet found a process eligible to run loop
goto the next priority level

end loop
return the process with the highest priority

12.4. Initialize i

12.4.1. Interface U
initialize (initial number of processes)

12.4.2. PDL
Create all the internal Kernel processes
Log the main unit as the current running process I
Place the Main Unit in the run queue
Mark the Main Unit as running (which it is) 3

12.5. lnsertjprocess

12.5.1. Interface
insert process (process identifier) I

12.5.2. PDL
Case current process state
When suspended I running I dead->

Null... in the first two cases, I
the process is already in the run queue;

in the last case,
the process can not be run again I

When blocked ->
If the process is not in an error state then

If the priority level of the process is empty then
Insert process at head of its priority level
Adjust the starting search location (if needed)

Else the priority level is occupied
Insert process at tail of its priority level I

Else
If the priority level of the process is empty then

Insert process at head of its priority level I
Insert process at error pointer of its priority level

130 CMU/SEI.89-TR-1 I

I
p

Adjust the starting search location (if needed)
Else if the last process at this level is in an error state thenI Insert process at tail of its priority level

Insert process at error pointer of its priority level
Else.. the error pointer is in the middle of the queue

Insert process at error pointer of its priority level
End if

End if
Mark the process as suspended

End case

12.6. Remove_process

If the head and tail pointers access the same object, the tail pointer will be left pointing at a
dequeued object. This is not a problem, since the insertion algorithm is driven off the head
pointer and performing the "proper" maintenance is not worth the run-time penalty.

When a process is running, it is no longer in an error state, because if it was in an error
state, that state was cleared when the process was selected to run. Thus, there is no need
to check the error pointer when a process blocks. Schedule performs the needed
maintenance prior to resuming the process.

3 12.6.1. Interface
remove_process (pid of process to remove,

new state of process after its removal)

12.6.2. PDL
Case current process state
When running ->

Adjust queue head to point to next process (since the process must
be at the head of the queue)

Remove process from queue
Change the process state

When suspended m>
Loop thru queue looking for process
Adjust queue head to point to next process
Update queue tail
Update error pointer
Remove process from queue
Change the process state

When blocked I dead ->
Null...in the these cases, the process is not in the run queue

End case

9
I CMU/SEI-89-TR-1 9 131

I
I

12.7. Schedule

12.7.1. Interface

procedure schedule (new priority for caller,
new preemption for caller,

12.7.2. PDL new state for caller)

If called from an interrupt handler then
Return.. .the interrupt encapsulation will handle the I

return correctly
End if

Save the new preemption
Case on new process state is
When running -> I

Null.. this is not a legal invocation of the Scheduler,
so ignore it

When suspended -> the default case I
If the new priority is different from the current priority then

Removeprocess from the run queue
Update the process's priority
Insert process back into the run queue...
this marks the process as suspended

Else
Mark the process as suspended

End if
When blocked ->

Reaoveprocess from the run queue I
Mark the process as blocked
Update the process's priority

When dead -> I

Removeprocess from the run queue
Mark the process as dead

End case;

Getnext process to run
Schedule slice event
If chosen process is the current running process then U

null... no context change
Else

If the tool interface is enabled
Log the process attributes for old process
Log the process attributes for new process

End if I
Switch from the current running process to the chosen process

End if
If no Kernel exception is pending for the process to run

End atomic

132 CMU/SEI-89-TR-19 I

I

Else.. .a Kernel exception is pending
End atomic
Raise the exception

End ifI
12.8. Schedule ih
This entry is used exclusively by the interrupt encapsulation mechanism for returning from
preemptive interrupts to the scheduler.

12.8.1. Interface

3 schedule ih

12.8.2. PDL
3 Save the new preemption

Mark the process as suspended

Get-next process to run
Schedule slice-event

If chosen process is the current running process thenI nu...no context change
Else

If the tool interface is enabled
Log the process attributes for old process
Log the process attributes for new process

End if
Switch from the current running process to the chosen process

End if
If no Kernel exception is pending for the process to run

Return from interrupt level to user level (i.e. end atomic)
Else.. .a Kernel exception is pending

Return from interrupt level to user level (i.e. end atomic)
Raise the exception

End if

12.9. Schedule slice event

3 12.9.1. Interface
schedule slice event (next process to run,

current running process)

1
I CMU/SEI-89-TR-1 9 133

I
p

12.9.2. PDL
(1) If time slicing is enabled then
(2) If the scheduler was entered by a slice expiring then

If next process to run is slicable then
Setup a slice event for the process I

End if
Else, som other action caused the scheduler to be entered

(3) If next process was the last process to run then I
no slice operations are required

(4) Else, a new process is going to run, so
Cancel the pending slice event for the old process

(5) If the new process is preemptable then
Setup a slice event for the new process

End if
End if

End if
End if

1. If time slicing has not been enabled (via an enable timeslicing Kernel
primitive call), then skip all of this. The overhead is a single test and branch.

2. Finally, consider the case of sliceevent id = noevent. In this case,
one of two things has happened:

a. A slice event has just expired. In this case, the slice event handler
sets the sliceeventid to noevent, and invokes the Scheduler.I

b. A non-slicable process has just executed a blocking primitive. In this
case, sliceeventid would already be noevent. 5

In all cases, if the chosen process is slicable, insert a new timeslice event into
the event handler. Although it is possible that the next process to run is the
current process, this is of no concern here. All that must occur is to insert a U
new slice event if the to-be-run process is slicable.

3. If the chosen process is the current running process, then do nothing. This
means that:

a. There is a slice event (still) pending, so the slice has not expired.
b. The next process to be scheduled is the currentrunning-process, so I

the reason the Scheduler is running is because an interrupt routine has
finished executing, and that routine did not elevate another process to
a priority higher than the priority of the currentrunningprocess. I

Therefore do nothing. The time used by the interrupt routine is implicitly
subtracted from the amount of time allocated to the timeslice.

4. If the process that has been selected is not the current.runningprocess, then I
cancel the pending timeslice for the current process. At this stage it is
irrelevant whether or not the new process is slicable. All that matters is that
the current process is about to be descheduled, so any pending timeslice
event must also be canceled, since the process is giving way to a higher
priority process.

5. If the new process that has been chosen to run is also slicable, then insert a

134 CMU/SEI-89-TR-19 1

I

timeslice event for the to-be-run process. In this manner, each time a process
unblocks, it starts with a new timeslice, irrespective of how much or how little
ofispeiulIloae lc tue p

I
S

I
I

U
I

I
I

U

I CMU/SEI-69.TR-1 915

I
p

12.10. Package Schdebug

+---
I

+----------------------------------I print_run queuefull I
+----------------------------------

II

I printrunqueue brief I

- - - - - - -- - - - -+-- - - -

I I

I print_current usn I
+---------- ---------------------- +

+---

This debug package gives visibility into the internal Scheduler run queue and as such, it is
nested within the Scheduler package. It allows for printing of the entire run queue (either in
full or just the schedule attributes) or just the current running process. This package iterates
over the queue using ptbdebug entries to dump the needed data.

12.10.1. Interface I
procedure print_runqueuefull;

or

procedure printrunqueue-brief; I
or

procedure print-current_runningprocess;5

12.10.2. Sample output
!SCEDEBUG: Dusaing run queue (briefly) 3
!Process: TK PROCESS

PTE: $$$ BEGI= SCEDULE ATTRIBUTES$$
PTB: state -> SUSPENDED
PTB: priority -> 1
PTB: preemption M> ENABLED
PTB: blocktime.high -> 0
PTB: block time.low => 0
PTB: unblocktime.high -> 0
PTB: unblock time.low -> 12459720

PTh: $$$$ END SCEDULE ATTRIBUTES $$
!Process: Time burner

PTh: $$$ BEGIN SCHEDULE ATTRIBUTES$$
PTB: state -> SUSPENDED
PTB: priority -> 11

PTE: preemption -> DISABLED
PTS: blocktime.high M> 0
PTB: block time.low => 0

136 CMU/SEI-89-TR-19 I

PTB: unblock tims.high =>0

PTB: unkb1ock -time.lov 0

PTB: $$$$ ENED SCEEDULE ATTRIBUTS $$$$£ !SCB DEBUG: End of Dump

CM/E-9-R1 3

3
I

13. Time Keeper 3
+---

+----------------------------------
I Initialixe I

+----------------------------------

I lnsert Event I
+----------------------------------

+----------------------------------
I Remove Event I
+----------------------------------

+----------------------------------
I Adjust Elapsed Time I *

+----------------------------------
+ ii

I Rest Epoch Time I *

+----------------------------------

* Atocmio Operations I
+---

Timekeeper encapsulates all of the time related events: 1
" Alarms

" Claim timeouts I
" Enable time slice timeouts

" Receivemessage timeouts
Send_message-andwait timeouts U

" Synchronize timeouts

" Wait timeouts

It is implemented using a timer and a pending event queue, ordered by absolute time of
event occurrence (i.e., the next event to occur is at the head of the time event queue).

Each process may have at most two events pending simultaneously:

" alarm i
" one of: claim timeout, receivemessage timeout, send_messageandwait

timeout, synchronize timeout, and wait timeout 3
The event timer is:

" a countdown timer loaded with the number of ticks to delay until interrupt 3
" the timer counts down to 0 then generates an interrupt
" the maximum count down value is 32 seconds =
" events greater than 32 seconds are divided into 32 second chunks (thus if an

138 CMU/SEI-89-TR-19 I

U
I

event is set to occur in 60 seconds, two interrupts occur: one at 32 seconds and3 another one -28 seconds later)

In Figure 24 illustrates the situation where the inserted event replaces the event currently at
the head of the time event queue. While Figure 25 traces the actions that occur when the
event actually occurs.

1I
I
I
I
!
I
I

1
U

I
I
I
I CMUISEI-89-TR-1 9 139

1

I
IEvent I

Timer

larm 3n/ end
e c Manageme t p (o

inomtoiPh rocesstal)

Tra e ev cnl . TimeI

Time Event
Oueue

1. The application issues a setalarm (onesecond). I
2. Aarmmanagement checks the current alarm status of the process (based on

information in the process table).
3. Insert an alarm event into the time keeper.

4. Read the time event queue and determine that the alarm event should be the u

next event to occur.

5. The current event timer is canceled.

6. The event timer for the alarm is set.
7. The alarm event is enqueued in the time event queue.

8. The process table is updated to reflect the existence of the alarm event for the I
process.

9. Control returns to the setalarm. i

Figure 24: Setting an Alarm Event I

140 CMU/SEI-89-TR-19 1

I
£

1 . Event

=-- Timer

Time oo 5

Keeper ,

Scheduler 7

I2
I Process Time Event

Table Queue

31. The alarm timeout expires and the timer generates an interrupt.

2. The event interrupt_handler fields the interrupt and examines the event at the
head of the timeevent-queue.

3. Since the event's time has passed, alarm event processing is performed.
4. The event's occurrence is logged in the process-table.

5. The event timer is configured for the next event in the time event queue (if
such an exists).

6. The alarmed process is removed for the run queue and reinserted at its alarm3 resumption priority.

7. Scheduler resumes the alarmed process with the alarm-expired exceptiongpending.

Flgure 25: Event Expiration

1
I
I
I
j CMUISEI-89-TR-19~ 141

I
I

13.1. Initialize U
The initial allocation of the time event queue accounts for all possible events generated by
all processes known to this node. The initial allocation is computed as follows:

2 * (maximum number of processes on this processor) + 1

13.1.1. Interface I
Initialize

13.1.2. PDL

Create the time event queue
Install the event-interrupt handler for the event timer j

13.2. Insert-event I
13.2.1. Interface
insertevent (new event,

type of event,
time of event,
pid of associate process, I
pointer to enqueued event)

13.2.2. PDL 1
If the event's time has already passed or is zero then
Processevent immdiately R
Return a null pointer (since the event wasn't enquoued)

Else
Begin atomic

If the time event queue is empty then
Set the timer for new event

Else
If new event expires before the event at the
time event queue head then

Cancel the timer for the current pending event
Set the timer for new event

End if
End if
Enqueue the new event in the event queue
Set pendingactivity for the process reflecting event type

End atomic
Return pointer to enquoued event I

End if

I
142 CMUISEI-89-TR-19 g

I
I

13.3. Remove-event

13.3.1. Interface
remove-event (identifier of event to remove)

13.3.2. PDL

Begin atomic
Delete the event
Grab the event at the head of the time event queue
If the deleted event was to expire before the event now at the

head of the time event queue then

Cancel the timer pending on the deleted event
Set a timer for the event at the time event queue head

End if
Reset the pending attributes flag for the process associated with
the event

End atomic

13.4. Adjust elapsedtime

13.4.1. Interface
adjustelapsed time (elapsed time adjustment)

13.4.2. PDL
Cancel any pending event timer
Begin atomic

While there are more events in the time event queue loop
Dequeue the next event
Perform the adjustment

End loop
Set an event timer to expire immediately... thus processing all
the events whose time has passed as a result of the adjustment

End atomic

1 13.5. Reset Epoch Time

13.5.1. Interface
resetepoch time (new time of day)

I

I CMU/SEI9-TR-19 143

I
U

13.5.2. PDL !
Cancel timeout for current pending event
Begin atomic
Compute increment - current time of day - new time of day 5
While there are more events in the time event queue loop

Dequeue the next event
Case time class of event
When elapsed -> a

Add the increment to time in event
Enqueue the modified event

When epoch -> I
Enqueue the uzmod ified event

End case
End loop I
Adjustepochtime inside the Clock
Set an event timer to expire inmediately... thus processing all
the events whose time has passed as a result of the adjustment

End atomic

13.6. Eventinterrupt-handler R
13.6.1. Interface I
N/A

13.6.2. PDLI
Acknowledge the interrupt

Read the current time I
While the time event queue has events yet to process loop

Dequeue the event at the head of the time event queue
If the event has expired then i

Process-eventi

Else
Enqueue the unprocessed event
Set the timer to expire at the time indicated by the event I

at the head of the queue
Exit the loop

End if
End loop I

13.7. Process Event

The processing for the expiration of a slice event is needed to allow the next process at this 3
priority of the currentrunningprocess to run. Removing and immediately reinserting a
process has the effect of moving the process to the end of the run queue at its priority level. 3

144 CMU/SEI-89-TR-19 I

I
I

13.7.1. !nterface

I process event (event to process)

313.7.2. PDL
Case on the type of event to process
When an alarm has expired ->

If the process is not blocked then
Removeprocess from the run queue

End if
Reset alarm pending parameters
Insert_process into run queue at the alarm resumption priority
Release any allocated datagram buffers
Cancel any other pending activity (as below)

When a receive times out ->
Reset the pending activity parameters
Setup the timeout exception for propagation
Place the process back in the run queue

When a semaphore claim operation times out ->

Reset the pending activity parameters
Setup the timeout exception for propagation
Place the process back in the run queue

When a wait operation times out ->
Reset the pending activity parameters
Place the process back in the run queue

When an acknowledged send operation times out >
Reset the pending activity parameters
Remove the message from the receiver's message queue
Send a "NAX" message to the sender
Delete datagram
Free datagram

When time slice expires ->

Reset the slice event parameters
If the sliced process is running then
Removeprocess from the run queue
Znsect-process back into the run queue

End if
End case

1 13.8. processevent_immediately

The processing for the expiration of a slice event is needed to allow the next process at this
priority of the currentrunningprocess to run. Removing and immediately reinserting a
process has the effect of moving the process to the end of the run queue at its priority level.

1
I CMU/SEJ-89-TR-19g 145

I
I

13.8.1. Interface
process.event.immdiately (event to process)

13.8.2. PDL
Case on the type of event to process

When an alarm has expired ->
If the process is not blocked then a

Remove process from the run queue
End if
Reset alarm pending parameters
Insertprocess back run queue at the alarm resuWztion priority
Release any allocated datagram buffers
Cancel any other pending activity (as below)
Schedule U

When a receive times out ->
Reset the pending activity parameters
Setup the timeout exception for propagationI

When a semaphore claim operation times out >
Reset the pending activity parameters
Setup the timeout exception for propagation I

When a wait operation times out ->
Reset the pending activity parameters
Place the process back in the run queue

When an acknowledged send operation times out >
Reset the pending activity parameters
Remove the message from the receiver's message queue
Send a "NAK" message to the sender I
Delete datagam
Free datagram

When time slice expires ->
Reset the slice event parameters
If the sliced process is running then
Removeaprocess from the run queue
Insert-process back into the run queue

End if
End case 5

13.9. Time Event Queue 5
The time event queue is the doubly linked structure that maintains the list of pending events.

The characteristics of the time event queue are: 3
" Ordered by expiration time, with each event in epoch time format
* Insert places event in its correct position in the queue (this is a high frequency

operation)
" Random deletion of queue objects occurs frequently as unblocking events

occur and the associated timeouts are canceled 3

146 CMU/SEI-89-TR-19 1

!
I

* The structure is periodically reorganized (whenever the user modifies the local
processor clock)

e Each entry in the queue is a record structure containing:

• Kind of event: alarm timeout, claim timeout, receive timeout, send
message and wait timeout, timeslice, or wait timeout

* Time class: epoch or elapsed

* Expiration time
• process identifier

Together, all these facets yield the structure shown in Figure 26.

I
I

time-eventqueue

)~~~rev,--,,1-

kindofevent alarm send-with_S(waitgtimeout m ACKtimeout

time class
(elapsed)

I expiry

(5 seconds)

i process_lD "arthur " "ivian"

IFigure 26: Time E vent Queue

I
I
I
1 CMU/SEI-49-TR-1 9 147

I
I

13.10. Package timekeeper debug
+--

II

+ +

Iprint time-event_queue I

I print ..time.event_queue entry Iie

This package is nested within the time-keeper package and allows for the diagnostic

printing of the entireOtime event queue or individual entries within the time event queue.

I

13.10.1. Interface
print-time event_queueI

and
print-time-event_queue entry (event identifier)

13.10.2. Sample Output!

TK: ##### BEGIN DUM Or TIM EVENT QUEUE #####
TK: ***

TX: kindofevent W> WAITTIMEOUT
TK: time-class 5> ELAPSED

TK: expiry.high => 0
TK: expirylow => 60445590
TK: process name -> TK PROCESS I

TX: ***

TK: ###### END DUMP OF TIME EVENT QUEUE ######

i
!
I
I
I

148 CMUISEI-89-TR-1 9 5

I
!

14. Tool Logger
+---
II

+----------------------------------Ilg .Psage. ontents I
+----------------------------------

+---------------------------------+
1 logploc ea. at tzibut • I

4.-------------------------------

Si-------------------------------
I log_macsage attzibut ea

+--------------------------------

* ---

This package is responsible for collecting the monitored attributes, formatting the data into a
tool interface message (shown in Table 4), and linking the message into the message queue
of the appropriate tool process. To accomplish the logging activity, this package is called
from strategic points in the Kernel, namely:

3 * CM.sendmessage and CM.receivemessage: to log message attributes and
message contents.

SCH.schedule, SCH.scheduleih, and PAM.kill: to log process attributes.

If for any reason, a logging cannot take place, no tool interface message is formatted and no
exception is generated (the request is simply ignored).

1I

I
I
l
U

iI CMUISEI-89-TR-.19 149

I
I

14.1. Logprocessattributes

The time is always measured as the first action immediately after it has been verified that
logging should happen. 1
14.1.1. Interface

procedure logprocess attributes
(process whose attributes ae to be logged)

14.1.2. PDL i
If it is ok to log the needed attributes then
Log the time the tool message formatting began
Format the tool message header
Collect the process attributes
Copy the process attributes to the tool message
Enqueue the tool message on the tool process's message queue I
If the tool process is pending on a message then

Insert the tool process into the Scheduler
End if

End if

14.2. Log_message attributes I
The time is always measured as the first action immediately after it has been verified that
logging should happen. U

14.2.1. Interface 3
Procedure log messageattributes

(process whose attributes are to be logged,
sender of the message being logged, I
receiver of the message being logged,
tag of the message being logged,
length of the message being logged) I

14.2.2. PDL

If it is ok to log the needed attributes then
Log the time the tool message formatting began
Format the tool message header
Collect the message attributea
Copy the message attributes to the tool message
Enqueue the tool message on the tool process's message queue
If the tool process is pending on a message then I

Insert the tool process into the Scheduler
End if

End if

150 CMU/SEI-SB-TR-19 5

I
3

14.3. Logmessagecontents

I The time is always measured as the first action immediately after it has been verified that
logging should happen.

1 14.3.1. Interface

Procedure logmessagecontents
(process whose attributes are to be logged,
length of message being logged,3 text of message being logged)

14.3.2. PDL
3 If it is ok to log the needed attributes then

Format the tool message header
Copy the message contents to the tool message
Enqueue the tool message on the tool process's message queue
If the tool process is pending on a message then

Insert the tool process into the Scheduler
End if

End if

3 14.4. prepare tolog

This is an internal procedure. It is always executed as the first activity of any logging
activity.

£ 14.4.1. Interface

Procedure preparetolog (process whose attributes are to be logged,
what process information is being collected,
boolean telling the logger to proceed,
datagram to hold the tool message)

14.4.2. PDL

If the tool interface is enabled for this process and
there is a tool process selected for this attribute and
there is room in the message of the tool process and
there is a datagram available then

n iit is ok to log the attribute information

£ End if

I
I
£ CMU/SEI-69-TR-1 9 151

I
I
U
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

152 CMU/SEI-89-TR-1 9 1

I
N

IV. Communication Subsystem
This Part describes the interfaces, aigorithms, and data structures that implement theI network

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I CMU/SEI-89-TR1 9

I

1. Communication Overview 3
All messages sent by the application and by the Kernel are stored in Kernel buffers, called j
"datagram buffers." The datagram buffers are maintained in the shared memory common to
the Kproc and Nproc. The datagram buffers are initially allocated from the shared memory
by the Nproc. Following this, the datagram buffers are readable and writable by both I
processors. To satisfy the requirements of the Kernel Facilities Definition, the following
programming assumptions have been used: 5

1. The send message Kernel primitive must be non-blocking (Section 19.1.1 of
the Kerne- Facilities Definition). The network may be busy at the time an
application process wishes to send a message. To prevent the process from I
blocking, the application buffer must be copied immediately into a Kerneldatagram buffer.

2. When a message is received by a node, the process to which the message is
addressed might not be pending on a receive message Kernel primitive
(Section 19.1.3 of the Kernel Facilities Definition). Consequently, the incoming
message must be stored in a Kernel buffer, and later copied into the I
application buffer,

3.

All messages whose destination process is on a remote processor must be copied twice -
once on the originating processor from the application buffer to a Kernel buffer, and again at
the remote node from a Kernel buffer to an application buffer.4 The flow of data are I
diagrammed in Figure 27. Certain optimizations reduce the number of times that data is
copied when both the sending and receiving process are located on the same processor. 3

Sending Receiving

Process
Process

Data 1 Buffer Buffer Buer APcaBuff

Copy operations mentioned in text

Figure 27: Data Flow Through the Kernel and Network 3
Once a message has been copied into a datagram buffer by the Kernel and enqueued into
the Nproc output queue, the Nproc assumes all responsibility for transferring the message to
the remote node.

The remainder of this chapter covers the internal Kernel abstractions necessary to 5

'The meqsages must be placed in an application buffer by the application prior to the call to the !
sendmessage or sendmessage and-wait Kernel primitives, and in a Kernel buffer as the message is
inrtially read off the network, prior to notifying the Kproc of an incoming message. These transactions are not
considered in the count of copy operations. I
154 CMU/SEI-89-TR-19

I
U

implement the Kproc/Nproc communication and interaction. In particular, Sections 8.1 and
8.2 outline and diagram the transmission of a message from one Kproc to another via the
network.

1 1.1. Design Decisions
A number of design decisions have been made concerning the implementation of the
communications algorithms. These are:

1. It is assumed that the Kproc and Nproc have some mechanism of
synchronization via semaphores. Two mechanisms of processor
synchronization are available:

a. Using the MC68020 CAS instruction to set semaphores used by the
two processors. This mechanism is the one currently in use, although
it is machine-specific.

b. A hardware-independent algorithm written entirely in Ada, derived from
the algorithms in [Raynal 86]. This algorithm has been tested and
executes correctly, although it is slightly slower than the
machine-specific version. This version is not being used, although it is
supplied as commentary in the body of LLH. 5

These semaphores will be used to lock resources shared by the Kproc and
Nproc, such as free lists and message queues (datagram buffers are stored in
message queues; the queues must be locked before any enqueueing or
dequeueing can be performed).

2. There is a single set of datagram buffers available to both the Nproc and the
Kproc, and it is allocated in the megabyte of shared memory common to both
processors. This set of buffers is used both for sending messages from the
Kproc to the network, and by the Nproc as it receives messages from the
network.

3. The set of datagram buffers comprises three pools of buffers (described in
greater detail in Section 2.3). Each pool has its own free list. Whenever the
Kernel allocates a buffer, it looks in the free list of the appropriate size.

4. Only the actual number of bytes in the application message (plus the
necessary Kernel overhead) are transmitted on the network, even if a buffer
larger than the application message is used.

5. Each message originating on a node (a Kproc/Nproc pair) is sent completely
before transmission of another message originating on the same node is
begun.

6. Messages that are passing through a node are be interleaved with any
message that may be originating on that node. This does not present aproblem, since each 32 bits of data that are transmitted have the sender and
receiver encoded in the top 16 bits. The node that is "downstream" of the

5'The short name LLH is used as an Ada code abbreviation for the package low level hardware. For a
complete list of all the package short names that are used in this document, please refer to Appendix H.

£ CMU/SEI-89-TR-19 155

U
I

sending node is able to identify the sender and recipient of each 32-bit packet
of a datagram.

7. Local optimizations are performed for local transmission of messages (Section I
10.1.29 of the Kernel Facilities Definition). The application program need not
know the location of the destination of the message; however, the Kproc
speeds message transmission when it is known that the source and I
destination processes are both resident on the same processor.

8. Implementation of the buffers is via doubly ,inked lists. Allocation from the free
list may be arbitrary (i.e., it does not matter which free pool is used, so long as
the buffers in it are of the appropriate size), although the send and receive
queues are absolutely First-In First-Out (FIFO). There are no message
priorities (Section 19 of the Kernel Facilities Definition). 1

9. The algorithms used for datagram buffer allocation, enqueueing, dequeueing,
and deallocation are the same on both the Kproc and the Nproc. Wherever
needed, semaphores are used to guarantee the atomicity of operations.

Although this design is specified for a single Kproc and a single Nproc comprising each
processor node, the algorithms that are described below are sufficiently flexible to allow for I
multiple Kprocs to be associated with a single Nproc.

I ,

I
I
I
!
I

I
I

156 CMU/SEI49-TR-1 9 3

U
I

2. Data Structures
The following data structures are used to implement data transfer using the Kproc and
Nproc model that we have established.

a2.1. Datagram Data Structures
A datagram is the Ada type used by the Kernel to keep track of messages. Datagrams are
allocated from the free lists with the subroutine allocdg (Section 4.6), enqueued into the
receive and transmit queues with the enqueue subroutine (Section 4.2), removed from
these queues with the dequeue subroutine (Section 4.3), and returned to the free lists with
the freedg subroutine (Section 4.7). Other subroutines support the ability to get the first
element from a queue without dequeueing it (get_first, described in Section 4.4), and to
delete an arbitrary element from a queue (delete, described in Section 4.5).

IDatagrams are never referenced directly, but are instead always accessed through
datagram pointers. For consistency, the datagram that is sent from one process is identical
to the datagram that is received by another. The Nproc knows nothing about the format of
messages other than their size, source, and destination. The datagram contents and
access mechanisms are described below.I
2.2. DatagramPointer

I The type datagrampointer is defined as follows:

type datagzampo*iter is access datagram;

A datagram_pointer is simply a pointer to a datagram. All references to datagrams
within the Kernel are made with this access type.

2.3. DatagramClass

Datagrams are divided into four distinct classes:

type datagxam_class is (ma.Ll., large, kernel, queuehead);

The different datagram classes are used for a number of reasons:

1. A significant space savings can be effected by allocating a small-sized
datagram to the application when a small message needs to be transmitted,
and only allocating a large datagram when larger application messages need
to be sent.

2. Although variant records would be the most natural way to accomplish this,
the code that our compilers generated was abominably inefficient. Therefore,
it was decided to use unchecked conversion to coerce the required
number of datagram pointer types into a single type called

I CMU/SEI-89-TR-19 157

I
I

da a ram pointer. To distinguish between the different sizes of
datagrams associated with the pointers, a field called class of type
diataaram class is present in each datagram.

3. Since variant records are not being used, rather than have an additional type
of structure for queue headers, a class called queue_head is used to
distinguish "real" datagrams from datagram queue headers. A queue header I
accesses a datagram that contains no data buffer (or rather, has a buffer of
zero size), and is used simply as the access mechanism for a queue. The
number of queues in use on a processor is determined at runtime as S
processes are created - there is one queue for every process, in addition to
the free queues and input and output queues. 5

The data buffer sizes associated with the various datagram classes (plus some additional
space for Kernel encapsulation of datagrams) are:

larae :G.ma:-:imum ressage size bytes (rounded up to an integral number
of 16-bit words).

One tenth of C3.maximum message size bytes (rounded to an
integral number of 16-bit words). If this fraction is smaller than 32 bytes,
the smaller buffer pool is not used. If this fraction is larger than 128
bytes, the value of 128 bytes is used. n

kernel NC.nct entry' size bytes (rounded to an integral number of 16-bit
words). This buffer size is used to ensure that an adequately sized
buffer is available to initialize the DARK network, even if the application I
specifies that CG. ma:-:imum me s s age_s i ze is zero bytes.

cueue n ,ead No data buffer is allocated for this class of datagram, because it is only
used as a queue header, and not for data transmission.

2.4. Datagram n

A datagram is divided into a local optimization component (which contains information for

processing locally optimized messages), a header component (which describes the contents
of the data, contains the various maintenance information, etc.) and a data component
(which contains the actual body of the application or Kernel message). The definitions of

these two components are:

I

I
158 CMU/SEI-89-TR-1 9 1

I
I

type datagram_header is
record

next : datagram_pointer;
prey : datagrampointer;
class datagramclass;
buffer-size bufferrange;
msg_count : hw_longnatural;
semaphore hw_longinteger;
message_length : buferrange;
operation : kerneloperation;
remote timeout : KT.kernel time;
sender NG.process_index_type;
receiver : NG.processindex type;
message_tag : CG.message_tagtype;
messageid : messageidentifier;
checksum hwinteger;

end record;

3 type copyactiontypes is (no copy_necessary,
copy_from_datagram_buff er,
copy_fromsendersbuffer);

type localoptimizationrecord is
record

do_optimization: boolean := false;
copyaction: copy_actiontypes := nocopy necessary;
copy_fromaddress: hw address;

* end record ;

type dataeram is
record

local: localopt imization_record;
header : datagram_header;
buffer databuffer (1 .. CG.messag_length_type' last);3 end record;

The Local component is used only when the receiver and sender are on the same3 processor. There are three pieces of information referenced by Local:

dooptimization
A flag used to indicate the message has been locally sent and should
be processed appropriately.

copy_action Indicates one of three actions the Kernel should take when copying the
message to the receiver's buffer. The action is affected by the level of
optimization that has taken place and reflects the condition of the
receiver when the sender issued the call to send. NoCopyNecessary
is set when the receiver was waiting and the message was copied
directly from the sender's buffer to the receiver's buffer. A copy in and
out of the datagram buffer has been avoided.
Copy_FromSendersBuffer is set when the message was not able to
be copied into the receiver's buffer and the sender issued a

I CMU/SEI-89-TR-19 159

U
I

SendMessageAndWait. This represents the next best level of
optimization. The copy is still made directly into the receiver's buffer
from the sender's buffer, but only after the receiver is ready.
CopyFromDatagraBuffer is set when it is not possible to copy
immediately into the receiver's buffer and the sender issued a
SendMessage. In this case, the sender could not be blocked and the
message had to be copied into the buffer of the datagram. At some
point when the receiver is ready, the Kernel will copy the message into
the receiver's buffer from the datagram. B

copyfromaddress
Address of sender's buffer when the CopyActon is
CopyFromSendersBuffer. At the point when the receiver is ready to
receive the optimized message the Kernel uses this address to copy to
the receiver's buffer from the blocked sender's buffer.

At best, during local optimization the transmission overhead of the network can be avoided l
and, in some cases, copying into the buffer of the datagram.

The description of the various fields within the header component are as follows: I
next This field contains the pointer to the next datagram in the queue and is

used to maintain the doubly linked lists. This field and a number of
fields following are not transmitted across the network. They are used
only on the node that actually "owns" the datagram and are not
considered part of the message that is shipped between processors. 3

prev This field contains the pointer to the previous datagram in the queue
and is used to maintain the doubly linked lists. This field is not
transmitted across the network and is maintained locally by each
processor node.

buffer-size This field is only used in queue headers and is ignored in datagrams. It
contains the size of the data buffer available to the application in this i
datagram (and not the number of bytes in the application message).
This field is not transmitted across the network and is maintained locally
by each processor node.

msg_count This field is only significant in queue headers and contains the number
of messages presently in the queue. This field is not transmitted across
the network and is maintained locally by each processor node. I

semaphore This field is used by both queue headers and datagrams, but in different
ways.

" In the queue headers, this field contains the interprocessor
semaphore for locking the queue for exclusive use. It
contains either LLH. free (indicating that the queue is
available for use) or LLH. busy (indicating that the queue is
presently busy, and is being modified). In queue headers,
this field is manipulated with the LLH. P and LLH. V
subroutines, and ensures that the Kproc and Nproc do not I
manipulate the queues simultaneously.

" In individual datagrams, this field contains either LLH. free

(indicating that the datagram is free from association with

160 CMUISEI-69-TR-19 1

I
any queue), or LLH .busy (indicating that the datagram is
currently in a queue). In the former case, any attempt to
delete the datagram from a queue will be ignored. In the
latter case, any attempt to re-enqueue the datagram will be
ignored. In datagrams, this field is manipulated by simply
setting the appropriate value while in an atomic region.

This field is not transmitted across the network and is maintained locally
_by each processor node.

message_length The number of bytes in the message text, as supplied by the
application. This value will always be less than or equal to the
buffer size field. This field, and all following fields are transmitted
across the network, and are considered part of the message that is sent
and received.

operation This field contains one value from the enumerated type
DGG.kernel_operation for both Kernel to Kernel (e.g.,
DGG.kernelmessage or DGG.initprotocolmessage) or
application (e.g., DGG.blind send or DGG.acknowledged_send)
messages, depending on the type and originator of the message. This

item is generated by the Kernel.

remotetimeout This field is only used when a send_message_andwait is
transmitted. The value specified in this field is the elapsed time as
calculated on the sending process.

sender The process index of the process that is sending this message. In
the case of DGG.nakprocess dead and related messages, the
sender field will be what would have been the processindex of the
process that is being marked as dead. Because the sender field
contains both a process number and a processor number, the sender
field uniquely identifies a process within the DARK network.

receiver The processindex of the process that is supposed to receive the
datagram. Because the receiver field contains both a process number
and a processor number, the receiver field uniquely identifies a process
within the DARK network.

message_tag In the case of an application-generated message, this field contains an
application-supplied message identifier that is passed to the application.
In the case of a Kernel-generated message, this field contains a value
from the enumerated type DGG ernel tag (i.e., ack, nak,
kill_process, etc.), which deterrr,.. es the action to be taken upon
receipt of the datagram.

messageid A sequence number assigned by the Kernel for use with5 s iend_message_andwait and the associated Kernel-to-Kenel reply.

checksum A checksum of the Kernel datagram message. This checksum is
supplied by the transmitting Nproc and is verified by the receiving
Nproc. Presently, the checksum is not calculated, and is always
supplied as 0 - this field is supplied for future network enhancements.

The array bounds of the data buffer field are defined to be
1 CG.message_length_type' last. No datagram is ever actually allocated with a

£ CMU/SEI-89-TR-1 9 161

U
I

data buffer of this size - this range is included to allow for datagrams of size
CG.maximum_message_size and smaller (as described in Section 2.3) to be allocated 3
and coerced, using unchecked conversion, into this type. Because of the very large
upper bound on the array range of data. buffer, no boundary check exceptions are ever
raised (and it is assumed that the subroutines in datagrammanagement are sufficiently I
robust for this not to be a problem).

1
I
I
I
I
I
I
I
I
I
I
I

162 CMU/SEI-89-TR-1 9 1

I

I
3. Semaphores and Atomic Regions
The Kproc and Nproc subprograms for datagram manipulation use both interprocessor
semaphores and atomic regions to protect Kernel data structures. Interprocessor
semaphores are manipulated with the subroutines LLH. P and LLH.V (these subroutines
implement a classical Dijkstra P/V semaphore system). Atomic regions are maintained by
the subroutines LLH.begin_atomic and LLH.endatomic. Each mechanism has a
different purpose.

The semaphores used in the message queue headers are designed to prevent
simultaneous access of the datagram queues by both the Kproc and the Nproc. Since the
amount of time required to access the queue headers is short, LLH.F is a blocking (i.e.,
busy/wait) operation - that is, the processor that calls LLH. P loops until the semaphore
becomes available.

Atomic operations are used in conjunction with semaphores to prevent queue operations
from being interrupted by the actions of an interrupt service routine operating on the same
processor. In this way, only a singie access to the queue may be made on a single
processor.

In all the subroutines described in Section 4, both atomic regions and semaphores are used.3 The primary reason for this is best illustrated with the following two scenarios:

Scenario 1:

3 a.While executing a BIO. send_processdatagram, the Kproc
enqueues a datagram being sent locally to a process receive queue.

b. At the same time, the Nproc receives a datagram from a different
processor node targeted for the same local process. The Nproc
interrupts the Kproc.

c. The Kproc interrupt service subroutine enqueues the incoming
datagram into the process receive queue.

If atomic regions are not used to surround the enqueue operations, the Kproc
interrupt service routine (step c) could begin executing while the main-line
Kproc subroutine (step a) was still accessing the queue. Either the interrupt

service routine will block forever (since the semaphore guarding the queue is
presently claimed by the main-line Kproc code), or the interrupt service routine
would corrupt the queue currently being manipulated by the main line code (if
the semaphore only precludes access by the Nproc).

3 Scenario 2:

a. The Kproc, executing a BIO. send kerneldatagram, dequeues a
datagram from the free queue so that it may build a Kernel message.

b. At the same time, the Nproc receives a packet from an incoming
datagram. It also attempts to dequeue a datagram from the free

* queue.

I CMU/SEI-89-TR-19 163

U
U

If interprocessor semaphores are not used to surround the dequeue
operations, both the Kproc and Nproc could conceivably be accessing the
same free queue at the same time, each corrupting the accesses of the other.

Other scenarios can easily be envisioned that couple the conflicting actions of all of the
datagram manipulation subroutines described in Section 4. It is necessary to use both
atomic regions (to prevent datagram corruption via an interrupt service routine accessing the
same datagram queue) and interprocessor semaphores (to prevent corruption by the other
processor accessing the same datagram queue) to lock datagram queues for subsequent
manipulation. Only by using both mechanisms on the Kproc can the integrity of the
datagram queues be guaranteed.

On the Nproc, it is not necessary to use both mechanisms; interprocessor semaphores
suffice. In the Nproc, some datagram queues are accessed only by interrupt service 5
routines, and others by only main-line (i.e., non-interrupt level) code. Because of this,
atomic sections are not needed (since interrupt service routines are themselves not
interruptible). See Section 7 for more details.

II
1
I
i

I
I

I
I

164 CMU/SEI-89-TR-1 9 1

4. Datagram Management
The fol!owing subroutines are used to manage the datagrams within the Kernel. These
subroutines are used to allocate datagrams from free queues, enqueue them into input and
output queues, and return them to the free queues when the Kernel is done with them. The
application program never sees these subroutines, nor need it ever be aware that5 datagrams are used for message transmission.

4.1. newqueue

The new aueue subroutine is used to create a new datagram queue header. This3 subroutine must be called before any enqueue operations can be performed.

The queue is initialized with a =sg_count field of 0 (i.e., no messages), a class field of

ITeuehead (i.e., this datagram only serves as a queue header, and is never allocated with
alioc dg or dequeue, Sections 4.6 and 4.3), and a buffer size field of 0 (i.e., no data
buffer associated with the datagram). All datagram queues are maintained as doubly linked3 lists, for reasons described in Section 4.5, and are created with this subroutine.

Since the collection of datagrams hat the Nproc allocates is in the shared memory region,
the datagram queues associated with them must also be in shared memory. The Kproc, on
the other hand, allocates datagram queues in its own local memory (to implement the
per-process input queues). Because of this difference, newqueue tests to see whether it3 is ,eing called from the Kproc or the Nproc.

4.1.1. Interface
function new_queue

return DGG. datagrampointer;

54.1.2. PDL
if is_Kproc then

allocate datagram from local heapI else
allocate datagram from shared memory heap

I end if

next = self reference -- Circular list
prev:- self reference -- Ciz-ular list

buffer size :- 0

msg_count : 0
semaphore := free

I
I CMUISEI-89-TR-1 9 165

U
I

4.2. enqueue

The en rueue subroutine is used by the Kernel to place a datagram at the tail of a queue.
The ena-ueue subroutine, in conjunction with the dequeue subroutine (Section 4.3),

provides a FIFO queueing system for datagrams. 5
The en(ueue subroutine places the specified datagram at the tail of the specified queue.

The msg- count field in the queue head is incremented by 1 for each datagram enqueued. 5
4.2.1. Interface

procedure enqueue (
dg : in DGG.datagram_poiLnter;
queue : in DGG.datagram pointer

4.2.2. PDL
begin atomic region
lock queue semaphore
if datagram is not busy (i.e., not in a queue) then

link datagram into tail of queue
mark datagram as bucy (i.e., in a queue)
queue.mag_count := queue.msg_count'+ 1

else
null

end if
unlock queue semaphore
end atomic region

4.3. dequeue

The dequeue subroutine is used by the Kernel to remove the first datagram from a queue 3
and return it to the caller. The dequeue Pbroutine, in conjunction with the enqueue

subroutine (Section 4.2), provides a FIFO queueing system for datagrams.

The deaueue subroutine removes the fimt datagram (i.e., the head of the queue) from the

specified queue. The .msg_count field in the queue neader is decremented by 1 for each
datagram enqueued. If no datagrams are available, dequeu, returns null.

4.3.1. Interface
function dequeue

queue: in DGG. datagramypointer
) return DGG.datagram pointer; 3

1
166 CMU/SEI-89-TR-1 9 1

*
U

4.3.2. PDL
begin atomic region
lock queue semaphore
if queue.msg_count > 0 then

unlink first datagram in queue
mark datagram as free (i.e., not in a queue)
queue .msgcount = queue .msg_count

elsevalue to return := datagram

vale_toreturn null
end if
unlock queue semaphore
end atomic region5 return value to return

3 4.4. getfirst

The aet first subroutine is used to return a pointer to the first datagram in a specified
queue without actually dequeueing it. It is us ,d by the Kernel receivemessage and
purge message queue subroutines.

The aet first subroutine returns a pointer to the first datagram in a queue, but does not
delete the datagram from the queue. This subroutine is used in conjunction with delete
instead of dez-ueue to eliminate some race conditions. These conditions are documented in

5 Appendix C.

4.4 1. Interface
function gt_first (

queue : in DGG.datagrampointer3) return DGG.datagrampointer;

4.4.2. PDL
begin atomic region
lock queue semaphore
i.f queue.msg_count > 0 then

copy pointer to first datagram
value to return : pointer

also

end alueto return := null

unlock queue semaphore

end atomic region
return value to return

1
I CMU/SEI-89-TR-1 9 167

I
U

4.5. delete

The deete subroutine is used to remove a specified datagram from a named queue. It is
used by the Kernel to remove a specific datagram from a queue prior to releasing it to the
free pool. A primary use of this subroutine is to delete a datagram (from anywhere in the
queue) whose timeout has expired. Although messages are enqueued and dequeued in the
process queues in FIFO order, timeouts do not necessarily occur in the same order. This
subroutine is provided to enable the deletion of a timed-out message from the middle of the I
queue.

The ze-e-e subroutine removes the specified datagram from the specified queue. It
operates on the assumption that the datagram is in the queue. No checking is done to
ensure that this is the case; checking requires an 0(n) algorithm, while safe use of a
non-checking algorithm requires an 0(1) algorithm. Should the test condition be false, the
datagram queue will be damaged and subsequent operations on the queue will be
jeopardized. This subroutine is used in conjunction with get_fi_-rst instead of deaueue to
eliminate race conditions. These conditions are documented in Appendix C.

4.5.1. Interface I
procedure deleto (

dg: in DGG.datagram pointer;
queue : in DGG.datagram pointer

4.5.2. PDL
begin atomic region
lock queue semaphore
if datagram is busy (i.e., in a queue)

unlink specified datagram
mark datagram as free (i.e., not in a queue)

else nulnull

end if
unlock queue semaphore 3
end atomic region

4.6. alloc-dg I

The ai-:c_dg subroutine is called by the Kernel when it needs to allocate a new datagram 3
for message transmission. Note that this subroutine differs from both dequeue and
ze: f-rst, which return a datagram from a specific queue. Alioc_dg searches the
available free queues and returns the smallest available datagram that fits the size 3
parameter requirements.

The ioo -g subroutine dequeues a datagram with a data buffer of at least the specified

168 CMU/SEI-89-TR-19 1

U
I

size from the first available free queue. If no datagrams are available, it returns null.3 However, if the requested size is larger than the available buffers (a situation that should not
happen, due to Ada compile-time or runtime range checking), it raises the exception
iilegal_datagram_snize.

4.6.1. Interface
function alloc-dg (

size : in DGG buffer-range
) return DGG.datagramypointer;

1 4.6.2. PDL
if size > large_queue.size and size > kernel_queue.size then

raise illegaldatagram size
end if;

-- The reason for using a comb structure for the conditional
-- statements (instead of nested elsifs) is that although the
-- application may request a small datagram buffer, there may
-- not be a buffer available - thus we must check to see if a

- datagram has been allocated after each step, and try again
-- with a different buffer pool if not.

if size <= smallqueue.size then
dg := dequeue from small queue
dg.do_optimization := false;

end if;
if dg = null and size <= large_queue size then

dg := dequeue from large queue
dg.do_optimization := false;

end if;
if dg = null and size <= kernelquoue size then

dg := dequeue from kernel- queue
end if;
return dg;

4.7. free .dg

3 The freedg subroutine is used by the Kernel communication subroutines when they have
finished with a datagram. This subroutine finds the appropriate free queue in which to place
the datagram. Freedg must be called when a datagram is no longer needed; if not, the
pool of available datagrams will eventually be exhausted, and subsequent calls to
al loc_dg will be unable to allocate a datagram.

SThe free_dg subroutine enqueues the specified datagram into the appropriate free queue.
Since all datagrams that the application can allocate should have been obtained via
ailoc_dg, the first three state 'ients in the case statement should always be executed.
However, in case the application attempts to release an illegal datagram type (i.e., one of
type queue_head), this subroutine raises the exception illegal_datagram class.

£ CMU/SEI-89-TR-19 169

I
4.7.1. Interface

procedure free_dg (3
dq : in DGG.datagram pointer

4.7.2. PDL !
case dg.class

when small => enqueue(dg, small queue)
when large => enqueue(dg, large queue)
when kernel => enqueue(dg, kernel queue)
when queue-head => raise illegaldatagramclass

end case

I
U
I
I

I
I

I
I

I
170 CMU/SEI-89-TR-1 9 1

I
I

5. Packet Communication
U All datagrams are broken up into 16-bit chunks (transmitted within 32-bit packets) for

transmission around the network. Because of the asynchronous nature of the
communication mechanism, there is no guarantee that a datagram arrives in its entirety
before another datagram is transmitted from another node. While the transmission of an
individual packet is an atomic operation, transmission of a datagram is not. Tnis means that
a given node may receive interleaved packets from multiple nodes. To ensure that all
packets arrive at their correct destination (and that datagrams are correctly reconstructed at
the destination node), each packet also contains the sender and receiver address.

A packet looks like the following illustration:

3 0 15 16 23 24 31

DaaTo FromData Address Address

3 Figure 28: Packet Layout

From-addresses and to-addresses may fall in the range of 16#00# through 16#FE#. The
value l6#FF# is reserved for internal use during initialization only, and may not be used as
a va!id network address (see Section 1.2 for details on how to configure the hardware
network address on the Kproc and Nproc). The from- and to-addresses in the packets
correspond to the physical-address field in the NCT, which is of type
NG.bus address.

1I
I
3
I
I
I
£ CMU/SEI-89-TR-1 9 171

I
I

6. Kproc/Nproc Interface
The interface between the Kproc and Nproc is asymmetrical. The Kproc is advised of
changes in the input queue by interrupts from the Nproc, while the Nproc polls the output
queue for changes in status. All data transfer is through the memory shared between the
Kproc and Nproc, and this in turn is effected by the subroutines enqueue, dequeue, etc. I
6.1. Shared Memory
The shared memory on a processor node resides at the addresses described in Section 3 1
and Section 10, Table 40. The first 256 bytes of this shared memory are reserved for
shared variables, while the remaining bytes are used for the Ada heap for the Nproc. In this
latter area, the Nproc allocates the datagram buffers and places them in the various free
queues. 6

There are two shared variables used by the Kproc/Nproc interface. These are I
DGM. inputqcueue and DGM. outputqueue, and they reside at the addresses defined by
.MEM. invut -ueue address and MEM. output_queue_address, respectively.

Other shared memory variables are used internally by package DM, but these are not used
by the Kproc/Nproc interface. The specific addresses and their uses can also be found in
the package memory_addresses.

6.2. Enqueueing Messages for Transmission I
When the Kproc wishes to transmit a message to another processor, it enqueues the 3
datagram containing the message into the output_queue. The Nproc main loop code
(Section 7.2) continually polls this queue. As soon as a datagram is present in the queue,
the Nproc commences transmitting it over the network. The datagram must be correctly 3
constructed (i.e., the sender and receiver fields must be initialized, as must the
message_length and operation fields - see Section 2.4 for details on each of these
fields). The subroutines BIO. sendkernel_datagram and
B: ._sendp rocess datagram are typically used to construct these datagrams. U

I

6rThe Ada heap for the Nproc is moved to the region of shared memory by a set of special linker directives. 3
This causes the Ada runtime to allocate memory from shared memory instead of the normal location.

172 CMU/SEI-89-TR-19 1

U
U

6.3. Receiving Incoming Messages

UWhen the Nproc receives a complete datagram that is addressed to the current node, it
enqueues the datagram into the inputqueue, and generates an interprocessor interrupt3via :P:. generat-e-kn interrupt. The Kproc must have an interrupt handler to service
this interrupt. When the Kproc responds to the interrupt, all it does is dequeue the
datagram from the input_queue and act according to the message contained in it. The
Kproc loops and dequeues as many datagrams as are available, since it may be the case
that multiple datagrams have been enqueued before the Kproc has a chance to respond to
the interrupt. The aez-ueue subroutine returns null if no datagrams are available in theI . u- _'eue (Section 4.3); this can be used as a test to see if the specified qJeue is
empty.

7

I
I
I

I
I

I
I
3

7The subroutine BO. in;.iaiize is used in the Kproc to bind the interrupt handler contained in
.rec'.ve receive datagra,_interrupt_handier (this subroutine is not exported in the spec),

which will in turn call the appropriate receive subroutines.

CMU/SEI-89-TR-19 173

I
I

7. Nproc Communication Routines
The Nproc operates as a purely interrupt-driven communication medium, with the
non-interrupt cycles being used to poll the output buffer for completed datagrams (and
thence to send them out onto the network). The Nproc communication subroutines are 5
broken up into four major parts:

1. Initialization. This part of the Nproc code is used to set up the communication
ports, allocate the shared datagram buffers, etc.

2. Main loop. The main loop is the polling (i.e., non-interrupt driven) part of the
Nproc code. It is used to scan for datagrams that are to be transmitted onto
the network.

3. Receiver interrupt service. This subroutine services interrupts as packets
arrive at this node. Packets are then tagged as: 5

* Addressed to this node (in which case they are reassembled as
datagrams),

* Addressed to another node (in which case they are simply passed
through to the next node downstream), or
"Rogue packets" (which, due to an unknown - and unchecked - error
condition, are incorrectly addressed and are discarded).

4. Transmitter ircerrupt service. This subroutine services interrupts whenever a
packet may be transmitted from this node. Packets are classified as either:

* "Originate" packets (which are from datagrams composed on the
current node), or I

* "Thru" packets (which have been received by this node, but which are
addressed to another node in the network). 3

The transmitter interrupt service subroutine sends a mixture of originate and
thru packets so as to fairly distribute network traffic.

The individual subroutines are discussed in greater detail in the following sections.

7.1. Initialization

The initialization subroutine is used both to set up the contents of the Nproc and to initialize 3
the parallel I/O board (see Section 2 for details on the parallel I/O hardware). The
subroutine is also responsible for binding and enabling the interrupt handlers (whose job it is
to communicate with the parallel port), and for getting the network into a known startup 3
state. It does this by transmitting a "magic cookie" packet and waiting for the "magic cookie"
to appear on its receive port. Since the ability to send a packet around the network is
essential (that is, since the closure of the Nproc communications ring must be guaranteed I
for any network communication to be possible), the Nproc will wait as long as necessary for
the "magic cookie" to be received. 3

174 CMU/SEI-89-TR-19 3

I
I

This method works both when the network is starting up (in which case each Nproc3 transmits the "magic cookie" to the node downstream of it), and when a single node reboots
when the network is already running (in which case the newly started Nproc transmits the
"magic cookie," and every other Nproc passes it through (since it is not addressed to it), until
the "magic cookie" finds its way completely around the ring to the sender).

The contents of the "magic cookie" packet is defined to be the 16#OOFFDEAD#. This

cc-responds to a sender address of 16#00# and a receiver address of 16#FF#, the latter
address being "illegal" and thus recognized as a special case by the Nproc software.

1 7.1.1. PDL
DG4. Nproc initialize

if PO. initialize_recv
PIO. initialize Lmt

send "magic cookie" on output port
loopexit when input port = "magic cookie"
and loop

KIM. bind interrupt_handler (parallel input vector)
KIM.enale(parallel input vector)
KIM. bind interrupthandler (parallel output vector)

(pIM.enble(parallel output vector)

PIO.enablerecvinterrupt
IPI.enable kn Lnterrupt

3 7.2. Main Loop

The main loop code of the Nproc simply checks to see if any datagrams are present in the
output queue. If there are, and if no datagram is currently being processed, the Nproc
begins processing the datagram by calling the transmitter prime subroutine (see Section 7.6
for details on this subroutine). No other work is done by the Nproc except for processing5 incoming datagrams in the interrupt service subroutines.

7.2.1. PDL
loop

if current output datagram - null then
current output datagram :- dequeue from output queue
if current output datagram /- null then

calculate checksum
calculate count of words to be transmitted
mark current output datagram as "active"
call transmitter prime

end if
end If

and loop

3 CMU/SEI-89-TR-19 175

U
U

7.3. Calculate Checksum Routine

In the present implementation, this subroutine is null, and returns a value of 0. In future
implementations, this subroutine can be replaced by a true checksum or cyclic redundancy
check (CRC) subroutine to verify the validity of the datagram contents. In the current
configuration, where all datagram packets are transmitted with a full handshake protocol, it
was not seen as necessary to implement this subroutine. 3

7.4. Receive Packet Interrupt Service Routine
The receive packet interrupt service subroutine is used to capture packets from the parallel
port and process them according to their address. Packets fall into three categories:

1. Packets that are addressed to this processor node
2. Packets that are addressed from this processor node
3. Packets that do not fall into either above category 3

Packets of the first category are collected into datagrams according to their sender. Packets
of the second category are discarded, since a packet sent by a node which has not been 3
picked up by a receiver is addressed to an illegal node address.8 Packets of the third
category are addressed to a different node and are passed through this node (with the intent
of their eventually reaching their destination).

Since a datagram is transmitted in its entirety by a node, before the next datagram can be
started, it is guaranteed that each incoming datagram is contiguous relative to its sender.
Although datagrams from multiple senders may arrive at this node in an interleaved ,ashion,
each datagram from a single sender is contiguous. That is to say, each datagram is
transmitted in its entirety by a node before another datagram is started. However, to allow
for equitable network traffic management, a node will intersperse "thru" packets and
"originate" packets. Because of this, once an initial packet is received from a sender, it is i
assumed that all following packets from that same sender will be part of the same datagram
(up to the declared size of the datagram), although other packets may arrive from other
nodes in between. Thus, the first packet of a datagram contains the size of the datagram
that is to be received.

If the packet is addressed to the current node, we determine what the current status of the 3
sender is with respect to this node. It can be in one of three modes (with a number of
possible transitions):

1. idle - Currently, there is no partial datagram being received by this node that

U
8This mechanism may change in future implementations of the Kernel. In the current implementation,

datagrams that make it around the network without being "claimed" are in error and discarded. Future
implementations may make use of more complex error recovery schemes. This implementation, however, takes I
the simpler approach.

176 CMU/SEI-89-TR-19

I
I

was sent by the specified remote node. In this case, we allocate a datagram
buffer to contain the incoming message (recall that the first packet from a
node contains the size of the datagram to follow, and that we can allocate a
datagram buffer based on the first packet received from a node).

If we are able to allocate the datagram buffer, the status is set to active, and
all subsequent packets for the datagram from that node are written into the
datagram buffer. If no datagram buffer of the appropriate size is available, the
mode is set to discard, and all subsequent packets that comprise that
datagram are discarded.

2. discard - All incoming packets from the specified node are discarded until
the current incoming datagram is complete. This mode will be used only
rarely, as it is expected that the datagram traffic will not be so high that the
Nproc will run out of buffers. Note that this mode reflects a lack of datagrams
and is not the same as the process message queue overflow state in the
Kernel Facilities Definition, Section 10.1.22.
When the current incoming datagram is compiete (the size of the datagram
was transmitted as the first packet of the datagram), the mode will be set to
J de, so that subsequent incoming packets from that node will again signal
the start of a datagram.

3. active - All incoming packets from the specified node are placed into the
incoming datagram buffer associated with that node (recall that datagrams are
transmitted contiguously with respect to a single node).

When the current incoming datagram is complete (the size of the datagram
was transmitted as the first packet of the datagram), the mode will be set to
ix e, so that subsequent incoming packets from that node will again signal
the start of a datagram. Additionally, the Nproc interrupts the Kproc, advising
it that an incoming datagram has been received.

If a packet is destined for a different processor, it is simply loaded into a "thru buffer" for
transmission to the next node in the ring (the thru buffer is emptied by the transmit interrupt
service subroutine, Section 7.5). If the thru buffer becomes full as a result of enqueueing a
packet, receive interrupts are disabled to prevent buffer overrun. It is anticipated that this
condition will never happen, since the Nproc does nothing other than process datagrams
and packets (and thus would never be loaded enough for the thru buffer to fill). If, however,
the node is so overloaded that the thru buffer fills up, we allow a temporary shut down (the
receiver interrupts are subsequently reenabled in the transmit interrupt subroutine). If the
thru buffer was empty before the packet was enqueued, this means that the thru buffer now3 has something in it, and the transmitter needs to be primed. :! tnis is the case, the
transmitter prime subroutine is called to start transmittinq the contents of the thru buffer (see
Section 7.6 for details on the prime subroutine).

7.4.1. PDL

I
I
3 CMU/SEI-89-TR-1 9 17?

I
I

while PIO.recv buffer-full loop
PIO. acknowledge recvinterrupt
if incoming packet addressed to this node then

case incoming status[from address] is
when idle => -- No datagram active

calculate size of incoming message I
allocate incoming datagram buffer
if no buffers available then I

set status : discardelse

set status := active
save incoming packet into buffer

end if
when discard => -- Throw out mode

throw out packet
when active => -- Save mode

save incoming packet
if packet is end of datagram

calculate checksum I
if checksum error then

discard incoming datagram
elsif datagram is sync message I

act on sync message
else

anquene into Kproc receive queue
set status := idle
IPI.generate kn interrupt

end if
end if

end case
elsif incoming packet addressed from this node or

incoming packet addresses are illegal 3
throw packet out

else
put packet into thru buffer
case thru buffer status is

when is full =>
PO.disablerecvinterrupt 3

when was_empty =>
x~it-prime

when others ->

null
end case

end if
end loop

I
178 CMU/SEI-89-TR-1 9 1

I
I

7.5. Transmit Packet Interrupt Service Routine

The transmit interrupt service subroutine is used to transmit packets to other nodes.
Packets fall into two categories:

3 1. Packets originating on this node. These packets are dequeued from the
Kproc output queue by the main loop code (Section 7.2).

2. Packets originating on other nodes, passing through this node. These packets
are received by the receive packet interrupt handler (Section 7.4) and are
enqueued into the thru packet buffer.

U The transmit interrupt handler sends both types of packets out onto the network in as fair a
distribution as possible (to prevent one node from monopolizing the network). When both
types of packets are available to be sent by the Nproc, the transmit interrupt subroutine
sends one "originate" packet for every (NC.nurrber of nodes+l)/2 "thru" packets. This
keeps any one node from overloading the network when other nodes need to transmit. If3 only one kind of packet is available, no rationing is performed, and all packets of that type
are transmitted.

When thru packets are transmitted, one of three conditions can exist:

1. The thru buffer was previously full, and sending a packet created space in the
queue. In this case, receiver interrupts are re-enabled, allowing more

I incoming packets to arrive (se3 Section 7.4).
2. The thru buffer is empty, having been exhausted by the last transmission. In

this case, if there are no originate packets to be sent, transmitter interrupts are
turned off, since no packets remain to be sent. Packets may later become
available in thk receive interrupt subroutine (Section 7.4) or from the main loop
code (Section 7.2), in which case transmit interrupts are re-enabled.

3. The thru buffer is neither full nor empty, in which case nothing is done with
either interrupt mechanism.

1 7.5.1. PDL
loop

if thru buffer not empty and thru count < maximum then
PIO. sandpacket (thru packet)
if thru status = was-full then

process inconing packet
PIO.enable_recvinterrut

elsif thru status - is_empty and
current output datagram - null then

PIO.disablexnit interrupt
else

null
end if
return -- we sent something, so quit

I
I CMU/SEI-89-TR-1 9 179

U
I

elsif current output datagram state - active then
PIO. sendpacket (originate packet)
if current output datagram finished then

DGM. free_dg(current output datagram)
current output datagram state := idle
if thru buffer empty them U

PIO.disable_ mit interrupt
return

end if 3
end if
reset thru count :- 0

alsoreturn -- we sent something, so quit

reset thru count := 0
if thru buffer empty them

PIO.disable -mit interrupt
return -- nothing to send, so quit

else
null -- something to send, continue loop

end if
end if

end loop 3

7.6. Transmitter Prime 3
The transmitter prime subroutine is used to prime the transmitter. It is called when the main
loop starts sending a new outgoing datagram, or when the receiver interrupt subroutine 3
sends the first thru packet. Both subroutines use it to start the transmitter cycling, so that as
each packet is transmitted, an interrupt is generated to get the next packet.

The transmitter on the parallel I/O board issues a transmitter interrupt when it is able to
transmit to the parallel port (i.e., when the transmitter data port is empty). This is different
from the receiver side, which interrupts when it has received data on the parallel port (i.e., I
when the receiver data buffer is full). Priming the transmitter pump, therefore, is simply a
matter of enabling transmitter interrupts. The parallel I/O board issues an interrupt as soon
as it can transmit, which causes the transmitter interrupt subroutine to be called. This in turn
transmits the first available word from the output datagram.

The transmitter may already be enabled (if there are thru packets still to be transmitted), in U
which case:

1. The transmitter may not interrupt immediately. This is not a concern, since it
will interrupt soon enough, and when it does, the transmitter interrupt
subroutine arbitrates between originate and thru packets,

2. The transmitter is already enabled. This also is of no concern, since enabling 3
an already enabled interrupt is legal.

180 CMU/SEI-89-TR-19

I
7.6.1. PDL3 PIOenable ~unit interrupt

U
I
I
I
I
I
I
I
I
I
I
I
U
I
U
U CMU/SEI-89-TR-1 9 181

I

8. Message Transfer Thread Examples 1
The following two sections outline the transfer of a message from one Kproc to another via
the DARK network. The first section describes the message transfer in words, calling out
each Kernel routine that is used to move data from one location to another. The second I
section views this transfer from a higher level, pictorially representing the data flow from the
application on one Kproc to another. 3

8.1. Detailed Thread Description 5
This section presents a simple scenario of one Kernel process transmitting a message to
another Kernel process residing on another processor. The receiving process is not
pending on a call to the Kernel primitive receive_message at the time the message is
sent. For readability purposes, the sending Kproc actions are in regular type, the sending
Nproc actions are In bold type, those of the receiving Kproc are in italics, and those of
the receiving Nproc are In bold Italics.

1. User process issues a CM. send-message Kernel call.
2. Local Kernel allocates datagram buffer of appropriate size from free list by I

using DGM. aloc_dg. If none is available, control is returned to the
application (datagram model does not require error reporting).

3. Local Kernel builds datagram header and copies application message into
datagram buffer using BIC. sendprocess_datagra.

4. Local Kernel places datagram buffer into DGM. output_queue with
DGM. enqueue.

5. Local Nproc detects buffer In queue when DGM. dequeue returns a valid
datagram (Nproc simply Idle loops when there are no messages to
send).

6. Local Nproc tr..nsmlts datagram contents onto network using
established low-level protocol. 1

7. Local Nproc calls DGM. free_dg to deallocate the datagram buffer.
8. Remote Nproc detects "new datagram begins" packet The first packet

of a datagram contains the length of the datagram to follow. U
9. Remote Nproc calls DGM. allocdg to allocate a datagram buffer of the

appropriate size from free list. If none is available, all remaining bytes
from this Incoming datagram are discarded.

10. Remote Nproc fills datagram buffer packet by packet as received off the
network. Note that multiple Incoming datagrams may be processed
simultaneously, although only one will be coming from any one
processor at a time.

11. When the Incoming datagram Is complete, the remote Nproc calls
DGM. enqueue to enqueue the datagram into DGM. input_queue.

12. Remote Nproc calls IPI.generate kn interrupt to Interrupt the
associated remote Kproc. 5

182 CMU/SEI-89-TR-1 9

I
I

13. Remote Kproc BiO. receivedatagram interrupthandler is entered3 14. Interrupt service calls DGM. dequeue to remove the datagram from
DGM. inputqueue.

15. Datagram contents are decoded, and a pointer to the datagram is enqueued
onto the receive process message queue. If the process receive message
queue is full, the error action selected by the queue overwrite rule is
performed.

16. Loop back to step 14 until no more datagram pointers are in Nproc input
queue.

17. At some later time, remote application issues CM. receivemessage Kernel
call.

18. Remote Kernel calls DGM. get first to get a pointer to first datagram in
process message queue and copies data into application buffer.

19. Remote Kernel calls DGM.delete to remove the datagram from the
application's incoming message queue.I

8.2. Graphic Representation of Thread
I This section presents another simple scenario of one Kernel process transmitting a

message to a second Kernel process residing on a different Kproc. Except where
absolutely essential, the specific routines used within the Kernel are not called out. Refer to
Section 8.1 for these details.

In Figure 29, the sending process calls CM. sendmessage to cause a message to be
transmitted to another process. To preserve the integrity of the data in the message, the
Kernel allocates a datagram in the shared memory pool and copies the application message
into it. The Kernel also maintains datagram bookkeeping information in the datagram
header, including the linked list pointers, application message length, sender, receiver, etc.

I
I
I
I
I
U
U CMU/SEI-89-TR-1 9 183

U
U

KPROC NPROC

Application SHARED MEMORY

Datagrara

scmnaphorm

message-length

Kernel "__

I
VME bus 3

FIgure 29: Send-Message - Application Message to Datagram

As can be seen in the figure above, the Kproc, Nproc, and shared memory are all 3
co-resident on the VME bus, and both the Kproc and Nproc can address the shared memory
with the same virtual addresses. 3
Once the application message has been copied into the datagram, and once the
bookkeeping information has been initialized, the datagram is enqueued into the output
queue so that the Nproc can transmit the datagram onto the network. As shown in Figure
30, the output message queue is maintained as a circular doubly linked list. Each datagram
header contains pointers to both the next and previous datagrams in the output queue (in
fact, all datagram lists - input queues, output queues, and free lists - are maintained as
circular doubly linked lists).

I
I
I
U
I

184 CMU/SEI-69-TR-1 9 3

I
3

SHARED MEMORY

I
I

I
I Datagram

I { Datagram

I] Datagran

Figure 30: Output Message Queue

3 When the Nproc detects the presence of a datagram in the output queue (and when no
other transmission action is being performed), it transmits the datagram to the network. The
Nproc does so by splitting the datagram into a series of 32-bit packets and transmitting them
in sequence. As shown in Figure 31, the datagram header is not transmitted to the network.
Instead, data are extracted from the datagram body in 16-bit chunks and bundled with the
16-bit sender and receiver address to form a 32-bit packet (see Figure 28 in Section 5 for
more details).

1
I

I CMU/SEI-89-TR-1 9 185

I S

L--- I

DATAGRAM5

.semaphore
..... Da ta

Reeiver

* I~azData* I I

Figure 31: Datagram to Packet Data Flow 3
As described in Section 7, packets can arrive at an Nproc at the same time that the Nproc is
transmitting packets. These arriving packets can either be addressed to the processor node
or they can be packets that are to be passed through this node to another processor node.
Figure 32 illustrates this multiple pathway communication scheme.

i
I
U
3
I
U
I

186 CMU/SEI-89-TR-1 9 5

I
I

Sending Node

i SHARED MEMORY NPROC

I E

I 'Il

PARALLEL PARALLEL
INPUT I OUTPUT

PORT PORT

I
Figure 32: Packet Traffic onto Network

Packets arrive at the parallel input port and are processed by the Nproc (either for "thru"
transmission or to be stored by this processor node). While this is happening, the Nproc is
also extracting data from the datagram body, bundling it into packets, and transmitting it
onto the network.

As mentioned previously, packets that arrive at a node are either addressed to that node or
are addressed to a different node. As seen in Figure 33, "thru" packets are simply
retransmitted on to the network. Those packets that are addressed to the current processor
node are bundled into a datagram in the shared memory pool. Section 7.4 describes this
procedure in detail.

3 CMU/SEI-89-TR-1 9 187

I
I

Receiving Node 3
SHARED MEMORY NPROC 3

B I

I
0

I~"14Pk

PARALLELPARALLEL

INPUTOUTPUTJ

Figure 33: Packet Traffic off Network

Once a datagram has been completely received, the Nproc places it into the input queue of 3
the associated Kproc and generates an interprocessor interrupt (Section 7.4.1 details the
code needed to perform these actions).

The Kproc responds to the interrupt and moves the datagram from the general input buffer
to the specific application process buffer. The application can then issue a call to
CM. receivemessage to copy the contents of the datagram into the application buffer.
Figure 34 illustrates this latter process. The Kernel copies the body of the datagram into the
application buffer and discards the datagram. Some of the information in the datagram
header is passed back to the application (i.e., the sender, message tag, and message
length), while other information is simply used for Kernel bookkeeping e.g., the linked list
pointers, checksum). 3

188 CMU/SEI-89-TR-19 3

I
I

*KPROC SHARED MEMORY NPROC

Application

I
Kernel "Sx -

Kernel Interrupt

I VME bus

Figure 34: ReceiveMessage - Datagram to Application Message

I
I
I
I
I
I
I
U
3 CMU/SEI-89-TR-1 9 189

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

190 CMU/SEI-89-TR-1 9 1

I
I

V. General Utilities

U
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I CMU/SEI-89-TR-1 9 191

I
I

1. Lowlevelstoragemanager
+---

+----------------------------------

+----------------------------------

This package is used to allocate blocks of bytes.

12 I

I
I
3
I
I
I
I
I
I
I
I

192 CMU/SEI-89-TR-1 9 I

I
I

1.1. Allocate

1.1.1. Interface
Allocate (number of bytes to reserve)

1.1.2. PDL

Allocate a byte array of the desired size
Return the address of the allocated area

i
I
I
I
I
i
I
i
I
I
i
I
I
I CMU/SEI-89-TR-1 9 193

2. Storage Manager
+---

+----------------------------------
Initialize I

+----------------------------------

4----------------------------------
I Allocate I
+----------------------------------

+----------------------------------

Deallocate I

+---------------------------------------I

This package manages all allocation and deallocation of dynamic storage. It does this by
encapsulating the equivalent Ada calls. This package exists only to provide the capability to
change to a different allocation mechanism should the standard Ada allocator prove toI
cause problems.

194 CU/SE-89-R-1I

I
I

2.1. Allocate

2.1.1. Interface
Allocate return object pointer

2.1.2. PDL

return new object

I 2.2. Deallocate

3 2.2.1. Interface

Deallocate (object pointer)

I 2.2.2. PDL

Free (object pointer)

2.3. Initialize

2.3.1. Interface

U Initialize

2.3.2. PDL
Null

U
I
I
I
I
I
I CMU/SEI-89-TR-1 9 195

I
I

3. Queue Manager
4---
II

I Create +
Delete
Delete

IDequeue 3
ZmPty
I nd _ofqueue
Enqueue I

enquoue
G eo t lmI
Get heed
Get next
Initialize iterator
Initialize backward iterator
Remove
Removenext

+----------------------------------
+ +
(queue+po nter

II
+----------------------------------I I

< queue empty >

.---

This package builds and manages an ordered queue for the instantiated type. I
This package is capable of being used in two modes: normal and fast. In normal mode, all

the operations search the queue for the desired element. In fast mode, a pointer to the
element is generated on insertion and used for quick retrieval and removal.

I
I
I
I
I
I

196 CMU/SEI-89-TR-1 9 I

I
I

VI. Target-Specific Utilities

U
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I CMU/SEI-89-TR-1 9 197

I
I

1. Interrupt Names

I I

IIInterrupt Vector Constants

4---

This package contains a set of named constants for use in setting up and handling
interrupts. These constants represent known vector numbers that uniquely identify an

interrupt.

The devices associated with the vectors and a discussion of interrupts in general can be
found in Part VIII.

II
I
I
I
I
I
I
I
1
I

198 CMU/SEI-89-TR-1 9 I

I
I

1.1. Interrupt Vector Constants
I There are several interrupt vector constants for each of the following devices:

1. Parallel I/O (PIO)

2. 8-bit timer (Timer)

3. 24-bit timers (Timer)

4. Serial I/O (SIO)
5. Real-time clock

3 6. Interprocessor interrupter

The constant names have the following form:

<device name>_<device section>.vector

Where <device name> is one of the short names in the above paragraph, and <device
section> is a unique designation given to the different sections of a device. For example,
there are four 24-bit timers - A, B, C, and D; thus, A Timer's interrupt vector constant is
TimerAVector.

I
I
I
I
I
I
I
I
I
I CMU/SEI-Sg-TR-1 9 199

2. Low-level-hardware
+---

I I

IMy-network -address I

+----------------------------------

I I + I IC
I Iakproc -- -- - -- -- -- -

+----------------------------------
I Isn ro

+----------------------------------

I InPreI

+----------------------------------
I'V
-- 4

+----------------------------------
Rost interruptpriorityI

+7 - --- - - -- - - -- - - -

+---------------------------------+

base Interrupt-priority

----------------- ---

2.1. My network-address

2.1.1. Interface
my-network-address return network address of caller

2.1.2. PDL
return value from hardware "pecific address for network address

200 CMU/SEI-89-TR-1 g

I
I

2.2. Iskproc

2.2.1. Interface
is_kproc return boolean

2.2.2. PDL
return value from hardware specific address for Kproc/Nproc flag

I 2.3. Is-nproc

2.3.1. Interface
is_nproc return boolean

I 2.3.2. PDL
return value from hardware specific address for Kproc/Nproc flag

2.4. P

2.4.1. InterfaceI
2.4.2. PDL
Use 68020 "CAS" instruction to claim a Dijkstra style semaphore.
Semaphore is shared between Kproc and Nproc.

2.5. V

2.5.1. Interface
IV

2.5.2. PDL

Release a Dijkstra style semaphore. Semaphore is shared between
Kproc and Nproc.

I
I
I CMU/SEI-89-TR-1 9 201

I
I

2.6. Setinterruptpriority I

Note, HIGHINTERRUPTPRIORITY (used below) has an actual value of 6, this shuts out
all interrupts except the real-time clock interrupt.

2.6.1. Interface

setinterruptpriority return old interrupt priority

2.6.2. PDL
Trap to Ada Runtime with request to set process's priority to I
HIGHINTERRUPTPRIORITY

Return previous process priority

2.7. Resetinterruptpriority I
Note, in normal usage, the parameter to resetinterruptpriority will be the result returned by
the corresponding call of setinterrupt-priority that opened the atomic region. Exceptionally,
when an atomic region is to be unconditionally closed, an unmatched call to
reset interruptpriority appears, taking as a paramater the value

BASEINTERRUPTPRIORITY exported by this package.

2.7.1. Interface
resetinterruptpriority (old interrupt priority)

2.7.2. PDL I
Trap to Ada Runtime with request to set process's priority to

the old interrupt priorityI
The previous process priority is discarded

2
I
U
I
I

202 CMU/SEI-89-TR-19 n

I
I
1} 3. Memory Addresses

+---
I I

Add.ess Constants) I

S+---+

This package contains only named address constants. These constants are used specify
addresses of variables that must be placed at a particular memory location.

In particular, these constants define the location of the different message queues that reside
in shared memory. For further information on the queues and shared memory refer to Part
IV and Part VIII.

I
I

I
I
I
i
I

I

I
I CMU/SEI-89-TR-.19 203

I
I

3.1. Address Constants

The address constants found in this package are for the small, large, and Kernel datagram I
queues, and input message queue and output message queue.

The constants names have the following form: I

<queue nane> address

Where <queue name> is a string that identifies the queue name.

II
I
N
a
I
I
I
I
I
I

204 CMUISEI-89-TR-1 9 I

I

4. MVME133A Definitions
I- -- -------------------------!II

(ardware Address Constants

Type NWP..Register*

I (Type MSRRegiter

I (Type MSR.Bits

I
This package contains named address constants and representation specifications for the

1 MVME1 33A Mono Board Computer. This board has several devices that are used duringI the operation of DARK, such as MC68020 Microprocessor, and MC68901 Multi-Function
Peripheral (MFP). Refer to Part VIII for additional information.1 The MVME1 33A also has the Z8530 Serial Communication Controller (SCC), but it is not
referenced or supported in this package. Refer to Chapter 6 for more information on this

* device.

I
i
I

I
I

I
i CMU/SEI-89-TR-1 9 205

I
!

4.1. Hardware Address Constants

The hardware address constants identify the locations of the MFP and Module Status
Register. U

4.2. Type MFP_Registers

Ada representation specification clauses are used to define the type and layout of the MFP
register set. I
There is an access type and constant declared for referencing the MFP. The access
constant points to the MFP register set and allows for easy device access through the Ada
language.

4.3. Type MSR_Register and MSRBits

The MSR is defined with an Ada representation specification clause. It defines the layout
and type of each field in the register. Two representations are provided for use in different I
type access to the register.

An access type of the MSRRegister record type is declared for accessing the structure. j

2
I
I
I
I
I
!
I

206 CMU/SEI-89-TR-1 9 i

5. MZ8305 Definitions
+---

I (BRazdware Address Constants)I

I +~~--- ------------------------------------

ThisepackageContarsnmdadesoosatln epeetto pciiain o h

Refe To nrtoVI

5- --------------

£hspcaecnan ae drs osat n ersnainseiiain o h
MC83IITdvc nteMzrM80 arle nefc n ie adaebad
ReeIoPatV 1

I CMU/SEI-89TR-1 9 207

I

5.1. Hardware Address Constants

The hardware address constants identify the locations of the base of the two Parallel I/O
and Timer device register banks.

5.2. Type PIO_Control And TimerConrol

Ada representation specification clauses are use to define the type and layout of each
register in the device register bank. The layout of the individual registers map directly to

those defined in the user's manual for the PI/T device. I
The register bank includes registers for the paral'el I/O and timer; however, they are
declared in two separate representation specifications, since the two sections are U
functionally different and are always reference separately.

In addition, there are access types and constants declared for the parallel I/O and timer i
register sets. The access constants point to each of the register sets for easy device
reference. !

t
II
!
I
I
I
!
I
I

28CMU/SEI-89TR-19~ I

I
I

6. SCC-porta

I I

I allocate
deallocatedisable rx -interrupts

i sabl e-tz int errupt a

enable rx-Interrupts
anablo .iX-Interrupts
got
got b yte
initialize

put_byte
send
setI +---------------------------------------

3 (buffer-range

I < Illegal-Operation

+--+

The Serial Communications Controller (SCC) hardware is a general purpose I/O device. A
description of the hardware can be found in Chapter VIII. This package is used to support

the synchronize primitive discussed in Chapter 13 and, as such, is not a general purpose
serial i/o package.

SCC Port A is used to provide an independent time synchronization mechanism using
standard, commonly available hardware. Each Kproc is connected via SCC Port A to form
the sync bus, dedicated exclusively to implementing the synchronize primitive on a
non-interfering basis. The software is constructed such that only one node, call the bus
master, is allowed to transmit at any given instant. Normally, the sync bus is in an idle state
where no one is transmitting or receiving. Mastership of the bus is achieved by successfully
allocating the device. When some process has successfully allocated the sync bus (i.e., has
become bus master) all other nodes on the bus are automatically transitioned into slave
mode, waiting for the time is now message from the bus master. The detailed layout of the

sync messages are contained in Appendix B, Table 2.

3 Some additional points to note about the sync bus software:

9 The data are sent via the transmitter interrupt service routine (tx_isr). Sending
data via the serial port functions as follows:

1. The transmitter is primed with the first byte of data and transmitter
interrupts are enabled.

2. When a byte has been transmitted, a transmitter interrupt is generated
on the sender.

3 CMU/SEI-89-TR-19 209

I
I

3. The tx isr sends the next byte in the message.

4. When the last byte in the message is sent, the txisr disables the
transmitter interrupts.

The data is received via the receiver interrupt service routine (rx_isr). The rxisr operates
similarly to the txisr:

1. An interrupt is generated after a byte of data is stored in the receive data
buffer. I

2. The rxisr stores the data in an incoming message buffer.

3. When the last byte of the message arrives, the rxisr resets the epoch time. 3
Note that, the actual event interrupt that processes the expired events won't
occur until all of the rxisr processing is complete, because it has a higher
(and must always have) interrupt priority than the event timer. 3

Figure 35 illustrates the functioning of the sync bus described above.

2
i
a
I
I
I
!
I
I
I

210 CMU/SEI-89-TR-1 9 i

t2
I

I 3 7

Sync Bus
Clock

1/4 18

II
ESCC Porta SCC Porta SCC Porta 10 Time

V r s)(rx isr) (xir

1. Application calls synchronize.I 2. Synchronize attempts to allocate the sync bus (thus acquiring bus
mastership).

3. If no other node is currently using the sync bus, a preparejto_sync message
is transmitted.

4. The prepare to sync message is received by all other nodes, transitioning
them into slave mode.

5. The current time of day is obtained,
6. Send first byte of timeisnow message.
7. The tx isr receives an interrupt after each byte of the message is sent. Itcompletes sending the timeisnow message asynchronously.

8. All slave nodes receive bytes 1 through 7 of the timeisnow message.
9. Last byte (byte 8) of timeisnow message received.

10. Adjust epochtime is invoked to update the clock.
11. The local processor clock is reset to reflect the new time.

3 Figure 35: Sync Processing

I CMU/SEI-89-TR-19 211

t
I

6.1. Allocate

6.1.1. Interface
Allocate return boolean 3

6.1.2. PDL
Case sync mods is R
When master ->

Disallow the process to allocate the bus, since some other process
(on this node) has a synchronization in progress I

When slave ->
Disallow the process to allocate the bus, since some other process

(on another node) has a synchronization in progress a
When idle => only in this state is the bus (presumably) available

Disable both rx & tx interrupts
Assert bus mastership I
Send out the prepare_tosync message
Wait for the data to be sent to all the nodes
Read back the sync character
If errors were detected in the prepareto sync message then a!.
collision occurred and this node must back off and wait
Transition back to slave mode and allow data to arrive
Wait for a specified time before reattempting to acquire

mastership (this node will either win mastership or
receive a sync byte from the winning node during this time)

Else
Transition to master mode
Inform the caller of successful allocation

End if
End case

6.2. Deallocate

6.2.1. Interface I
deallocate

6.2.2. PDL I
Case sync mode is

When idle or slave ->
null

When master ->
Set sync mode to idle I
Reset sync bus to slave mode

Enablerx_interrupts
End case

212 CMU/SEI-89-TR-19 i

I
I

6.3. Disablerxinterrupts

Since the enable/disable bits for both the Rx and Tx interrupts are stored in the same byte,g software flags are maintained that indicate the current state of each interrupt.

6.3.1. Interface
5 disable rx-interrupts

6.3.2. PDL
Case tx enabled is

When true =>
Disable rx interrupt and enable tx interrupt

When false ->
Disable rx interrupt and disable tx interrupt

End case
Set rxenabled to false

36.4. Disable tx interrupts

Since the enable/disable bits for both the Rx and Tx interrupts are stored in the same byte,

software flags are maintained that indicate the current state of each interrupt.

i 6.4.1. Interface
disabletx_interrupts

5 6.4.2. PDL
Case rx enabled is

When true ->
Enable rx interrupt and disable tx interrupt

When false ->
Disable rx interrupt and disable tz interrupt

End case
Set txenabled to false

6.5. Enable rx interrupts
3 Since the enable/disable bits for both the Rx and Tx interrupts are stored in the same byte,

software flags are maintained that indicate the current state of each interrupt.

9
I
I CMU/SEI-89-TR-1 9 213

I
I

6.5.1. Interface
enablerx-interrupts I

6.5.2. PDL I
Case tx enabled is

When true =>
Enable rr interrupt and enable tx interrupt

When false =>

Enable rx interrupt and disable tx interrupt
End case
Set rx-enabled to true

6.6. Enable tx interrupts i

Since the enable/disable bits for both the Rx and Tx interrupts are stored in the same byte,
software flags are maintained that indicate the current state of each interrupt.

6.6.1. Interface I
enable-txinterrupts

6.6.2. PDL S
Case rx_enabled is

When true -> H
enable rx interrupt and enable tx interrupt

When false ->

Disable rx interrupt and enable tx interruptI
End case

Set tx enabled to true

6.7. Get

6.7.1. Interface
Get (register to read) I

return byte read from register

6.7.2. PDL 5
Select register to read

Return data in register 3

I
214 CMU/SEI-89-TR-19 I

I
I
g 6.8. Get-byte

6.8.1. Interface
3 getbyte (data byte,

data valid)

6.8.2. PDL
If data is available

Read the data
Set the data valid to true
Reset any pending tx interrupts
Reset any pending rx interrupts

Else
Set the data valid to falseg End if

i 6.9. Initialize

6.9.1. Interface
Initialize

i 6.9.2. PDL
Bind the receiver interrupt handler
Enable the receiver interrupt
Bind the transmitter interrupt handler
Enable the transmitter interrupt
Clear the rx data register (it is quad buffered)
Set all the command registers
Allow (in hardware) rx interrupts to occur
Disallow (in hardware) tx interrupts to occur

6.10. Put-byte

3 6.10.1. Interface
3 putbyte (data byte)

6.10.2. PDL
Wait for a space in the tx data buffer to become available
Place the data in the tx data buffer

I CMU/SEI-89-TR-19 215

I
I

6.11. Send

6.11.1. Interface
send (buffer address, data count) 3
6.11.2. PDL
Case on sync mode is I
When master =>

Disable rx interrupts (since txisr will read the loop back bytes)
Copy the message into local storage I
Enable Tx interrupts
Prime the tx buffer with the first byte of the message

When slave -> I
Reject the operation

When idle ->
Reject the operation I

End case

6.12. Set I
6.12.1. Interface 5

set (register
data) 3

6.12.2. PDL
Setup register to write
Write data to register

6.13. Rx isr

6.13.1. Interface I
N/A i

6.13.2. PDL
If receive data errors are detected >

return, i.e., ignore the interrupt (the sander will I
retransmit the bad data)

End if
Acknowledge the interrupt
Case on sync mode
when idle -> node can safely transition to slave mode

(no prepare tosync message has arrived)

216 CMU/SEI-89-TR-19 1

I
I

read the sync protocol byte
transition to slave mode (i.e., listen-only mode)
reset the received message counter

when slave ->
get the next byte of message
if this is the last byte of the message then

reset the epoch time
transition back into idle mode

end if;
when master =>

get the offending byte to clear the rx pending conditions
end case;

16.14. Tx-isr

6.14.1. Interface
N/A

I6.14.2. PDL
If errors were detected during transmission then

Resend the bad character
Else

Read back the last character sent (thus resetting any
pending conditions)

if the current byte count < the length of the message then
Send the next byte of the message

Else, the message is completely sent...
Reset the output buffer parameters
Wait for all the characters to be transmitted
Read back the last character
Disable and reset Tx interrupts
Release bus mastership

C
I
3
I
!
1 CMUISEI-89TR-1 9 217

I
I

7. Timer-controller 3

I I
(TimerA)
(TimerB)A
(TimerC)

(Tizmr7DI

timer count) 3
!I

one second count

_ I
timer-mode)

+----------------------------------
I acknowledgetimer-interrupt

cancel timer
disbl; timer

enabletimer
getcurrent count
initialize
initialize timer I
set timer

4----------------------------------
II

A description of the actual timer hardware is found in Part VIII. From a software

perspective, the timers are simple devices that are loaded with a value and told to start.
When the timers have decremented the initial value to zero, an interrupt is generated. The U
timers operation in two modes:

1. Single_shot: where the initial value is decremented to zero and then the timer
is reloaded with the timer's maximum value and counting continues. This I
maximum count allows the user enough time to stop the timer before another
interrupt is generated.

2. Automatic: where the initial value is decremented to zero and then the timer is I
reloaded with the initial value. This allows the user to generate an interrupt at
a predictable rate. 3

The Kernel uses the single-shot mode for managing the time event queue (discussed in
Chapter 13) and the automatic mode for the real time clock (discussed in Chapter 2). 3

218 CMU/SEI-89-TR-19 1

I
i

7.1. acknowledge timerinterrupt

7.1.1. Interface

3 acknowledge_timer interrupt (name of timer)

7.1.2. PDL

Reset timer interrupt
Reenable timer interruptI

7.2. cancel timer

I 7.2.1. Interface

3 canceltimer (name of timer)

7.2.2. PDL

£ Disable the timer

3 7.3. Disabletimer

7.3.1. Interface

disable-timer (name of timer)

i3 7.3.2. PDL

Disable timer interrupt
Stop timer from counting

3 7.4. Enabletimer

7.4.1. Interface

enabletimer(name of timer,
timer mode)

1 7.4.2. PDL

Set timer to begin counting down in given mode
Enable timer to interrupt

I CMU/SEI-89-TR-19 219

I
I

7.5. Getcurrentcount

Reading the current count does not stop the timer from counting or interfere with its
processing. !

7.5.1. Interface

getcurrent count (name of timer) return timer count 3
7.5.2. PDL 3

Read current value of timer count (1)
Read current value of timer count (2)
Adjust result to allow for overflow/wrap around between

read (1) and read(2)
Return adjust result 3

7.6. initialize

7.6.1. Interface

initialize (timer vector
address of timer interrupt handler)

7.6.2. PDL 3
Bind the interrupt handler
Enable the interrupt handler

7.7. initialize timer g
7.7.1. Interface

initialize-timer (name of timer,
timer count, I
timer vector)

7.7.2. PDL. 1
Set timer to interrupt at timer vector
Set timer to count down from timer count I

2

220 CMU/SEI-89-TR-19 I

I
i

7.8. set-timer

7.8.1. Interface3 set_timer (timer name,
timer vector

7.8.2. PDL time of interrupt)

If the timer value > the maximum countdown time then
Set the timer for its maximum countdown time

Else
Convert the countdown time to timer ticks (each tick is 2 microsec)

End if
Enable the timer

I
I
I
I
I

I
I
I
I
I
i CMU/SEI-89-TR-1 9 221

I
B
I
I
p
I
I
I
I
I
g
I
I
I
I
I
I
I

222 CMU/SEbBB-TR-1 ~ I

I
I

VII. Debug Utilities

1
I
I
I
I
I
I
I
I
I
I
I
£
I
I
I CMU/SEI-89-TR-1 9 223

3
I

1. CSAdebug

I I

+ + I

This utility prints the contents of the context save area associated with a particular process.
It is 68020-specific. 3

I
I
I
I
i
I
I
I
I
3
I
I

224 CMU/SEI-89-TR-1 9 3

I
I
u1.1. print_csa

1.1.1. Interface
1 printcsa (context save area contents)

1.1.2. Sample Output
PTB: stack low address -> -1
PTB: stack-highaddress => -1
PTB: contextsaved => VIACALL
PTB: program_counter => 0
PTh: status_register => 0
PTB: data registers

[do] =>

[d4] =>
[d4] => 0[d3] - 0

[d6] => 0
[d7] => 0

PTB: address registers
fa0] => 0
[al] 0>
[a2] > 0
[a3] => 0
[a4] => 0
[a5] => 0i [a6] =>0
[a7] m>0

PTB: floating point coprocessor =>0 0 0 0
l0 0 0 0

0 0 0 0
0 0 0 0

I0 0 0 0

0 0 0 0
0 0 0 0

I0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

I0 0 0 0

0 0 0 0
0 0 0 0

I0 0 0 0

0 0 0 0
0 0 0 0

CMU/SEI-89-TR-1 9 225

3

2. Debug
4---
I I

+---------------------------------+
I set_debuglevel I
------- ---------------------------

I debuglevel

I I
unit identifier

+

This package contains an enumerated type of the short names of all the Kernel packages.
Associated with each package is a debug level. Taken together, they are used to control
debug out in the corresponding package. Currently, all debug output is controlled at the
package level, but any unit name can be added to this package and used for a finer level of
control.

Any new packages added to the system should be added to this list. In reality, any unit
name can be added to the package and used to control debug output. 3
The debug levels are simple integers used to control the debugging output embedded in the
Kernel packages. The exact meaning of any particular value depends on the package, but 3
in general, there are two points:

1. The larger the number the larger the amount of debug data generated.

2. A value of zero turns off all debug output by a package.

For example, suppose that one wanted to turn on the debugging in the package
processor-management (short name: rm). This would look like:

set_debug_level (Cm, 100);

Subsequently, in the body of processor-management one would find the debug output like:

if debug_level(tm) >- 99 then
text io. putline ("some truly important data...");

End if;

I
I
I

226 CMU/SEI-89-TR-1 9 3

2.1. Set-debug level

1 2.1.1. Interface
set-debug-.level (unit short name,

debug level)

2.1.2. PDL

Set the current debug level for the unit to the spe cified value

1 2.2. debug level

1 2.2.1. Interface
debumg level (unit short name) return integer

2.2.2. PDL5 Return the current doubg level for the name unit

CM/E-9-R1 2

I
3

3. dggdebug

II
I PrInt datagram I

IPrlnt _qeue I

--

This package prints the contents of a single datagram or an entire queue of datagrams.
Datagrams can be dumped in two ways:

1. Header information only

2. Header information and message text (as a block of byte data)

I
I
i
I
!
I
I
I
!
I

228 CMU/SEI-89-TR-1 9 3

I
I

3.1. Printdatagram

1 3.1.1. Interface
printdatagram (pointer to datagram to print

print whole datagram flag)

5 3.1.2. PDL
print contents of datagram header
if dumpwholedatagram then

a print contents of entire datagram buffer
else

print first 6 bytes of datagram buffer
* end if

3.1.3. Sample output
I Datagram located at 16#IOF528#

next > 16#1006F0# prey => 16#1006F0#

class => SMALL
buffer size => 64
msg_count => 0
semaphore => 0
message_length 4
operation => BLIND_SEND
remote-timeout => microsec (high 32 bits) => 0

microsec (low 32 bits) => 0
sender => 0 / -32766
receiver => 1 / -32765
messagetag => 0
messageid => 0
checksum -> 16#0#5 buffer => 102 101 101

I 3.2. Printqueue

3.2.1. Interface

5 print_queue (pointer to datagram queue to print
print whole datagram flag)

3 3.2.2. PDL

For every datagram in queue loop
If dump_whole datagram then

Call print_datagram(dump whole_buffer -> true)
Else5 Print selected header information

3 CMU/SEI-89-TR-19 229

1
U

End if
End loop 3

3.2.3. Sample output
Datagram queue located at 16#1006F0# 3

- 2 datagrams in queue -
Datagram located at 16#IOF528#

next -> 16#IOF430# prey -> 16#1006F0#
class -> SMALL
sender -> 0 / -32766
receiver > 1 / -32765
message_length -> 4
operation -> BLIND_SEND
messagetag -> 0
message_id =>0

Datagram located at 16#10F430#
next > 16#1006F0# prev > 16#IOF528#

class =>SMALLI
sender -> 0 / -32766
receiver -> 1 / -32765
messagelength -> 7
operation -> BLIDSEND
message_tag -> 2
message ..id > 0 3

I
I
I
I
I
U

I

230 CMU/SEI-89-Th-1 9 3

I

4. Make NCT
I +---

I I
+----------------------------------
IMake.NCT+I
---------------------------------- I

This is procedure prompts the caller to select one of the available network configurations. It

then fills in the NCT appropriately and returns the selected configuration to the caller. It is
setup to work with the DARK hardware described in Chapter VIII.

2
I
U
I
I

I

I
I
!
!
I
3 CMU/SEI-89-T R-19 231

I
I

4.1. Make nct

4.1.1. Interface

make_nct (character indicating selected configuration) 1
4.1.2. Output

make nct: The available network configurations axe... 5
make nct: 0> stand alone node 0
makenct: 1> stand alone node 1
makenct: 2> stand alone node 2
make nct: 3> stand alone node 3
make nct: a> 2 nodes (0/I/x/x) 0 master
makenct: b> 2 nodes (2/3/x/x) 2 master
make nct: c> 4 nodes (0/1/2/3) 0 master

makenct: Enter your network configuration: 3

I
I
I
I
I
I
I
I
I
I

232 CMU/SEI4OTR-1 9 3

II 5. NCT-debug

II3I print natI

I print_netentry I
- ---

I+
This package prints all or part of the NCT.

I
I
I
I
I
I
I
I
I
I
I
I
3 CMU/SEI-89-TR-1 9 233

I
I

5.1. Print nct

5.1.1. Interface

Printnct 1
5.1.2. PDL
For each entry in the NCT 5

Printnct_entry (the next NCT entry index)
End loop

5.2. printnctentry

5.2.1. Interface
printnctentry (index of entry into NCT) 3

5.2.2. Sample Output

NCT: **** BEGIN DUMP OF NCT ENTRY ****
NCT: logicalname => Kproc_a
NCT: physical-address => 0

NCT: kerneldevice => TRUE
NCT: needed to-run => TRUE
NCT: allocated process id => NULL

NCT: initialization order => 0
NCT: initialization complete > FALSE

NCT: ***** END DUMP OF NCT ENTRY *****

I
I
I
U
I
I

234 CMU/SEI-89-TR-1 9 3

I
I

6. PTBdebug
* +---

II

I Printprec*&s table I

IIn t.proestable entpa t I

I +~~--------------------------------------

I Printpoer dtble tr n eentryI

I
~~process table antry-part)

I

Local procedures are defined to print each sub-record of a process table entry:

3e processattributes

e scheduleattributes

* communicationattributes

9 pendingactivityattributes
* send w ack_attributes

£ e semaphoreattributes

9 toolinterfaceattributes

Each of these internal procedures ',akes a process identifier as an input parameter and
dumps the appropriate section of the process table.

9
I
I
U
I
I
3 CMUISEI-89-TR-1 9 235

I
I

6.1. print_processtable

This procedure prints the entire process table entry for each process.

6.1.1. Interface 3
print.process table

6.1.2. PDL
For each entry in the process table loop

printprocess table_entry (process identifier)
end loop

6.2. printprocesstable

This procedure prints only a selected part of the process table entry for each process. 3
6.2.1. Interface
print_process-table (process table entry part) I

6.2.2. PDL 3
For each entry in the process table loop

printyprocess table_entry (process identifier,
process table entry part) I

end loop

6.3. printprocesstableentrypart

6.3.1. Interface I
print process-table entry_part (process identifier,

process table entry part)

6.3.2. PDL
Using the appropriate local procedure, print that part of
the process table for the selected process.

6.3.3. Sample Output
See printprocesstable-entry below.

2
236 CMU/SEI-69-TR-1 9!

I
I

6.4. printprocesstableentry

36.4.1. Interface3 printprocesstableentry (process identifier)

6.4.2. Sample Output
PTB: **** BEGIN DVMP OF PROCESS TABLE ENTRY

PTB: $$$ BEGIN PROCESS ATTRIBUTES $$$
PTB: logical_name => foo 1
PTB: kind_of process => KENEL_PROCESS
PTB: process init status.declared -> FALSE
PTB: process init status.created => FALSE
PTB: processindex.node_nuwber => 0
PTB: process index.process number => 0
PTB: code address => -1
PTB: stack low address => -1
PTE: stack_higi__address => -1
PTB: context saved => VIA CALL
PTB: program_counter => 0
PTB: status register => 0
PTB: data registers

[dO] -> 0
[dl] => 0
[d2] => 0
[d3] => 0
[d4] => 0
[d5] => 0
[d6] => 0
[d7] "> 0

PTB: address registers
[aO] => 0
[al] => 0
[a2] => 0
[a3] => 0
[a4] =>0
[a5] => 0
[a6] => 0
[a7/] -> 0

PTB: floating-pointcoprocessor =>
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 00 0 0 0

I0 0 0 0

ICMU/SEI-89-TR-19 237

I
0 0 0 0o o 0 0

0 0 0 0 I
0 0 0 0
0 0 0 0
0 0 0 0 !
0 0 0 0
0 0

PT: END PROCESS ATTRIBUTES $$$$
PTR: $$$ BEGIN ScHEDULE ATTRIBUTES $$$ I

PTB: state -> RUNNING
PTB: priority => 1
PTB: preemption -> DISABLED
PTB: block time .day => 0
PTB: block time.second => 0.00000

PTB: unblock_time. day -> 0I
PTB: unblock time.second -> 0.00000

PT: $$$$ END SCHEDULE ATTRIBUTES $$$$
PTB: $$$ BEGIN COMMUNICATION ATTRIBUTES $$$

PTB: next availablemessageID -> 0
PTB: maximum messagequeue_size => 0
PTB: messagequeue => -1
PTB: current send buffer => -1
PTB: queue overwrite rule > DROPNEWEST MESSAGE
PTB: message queue_oveflow -> FALSE

PTB: $$$$ END CON4UNICATION ATTRIBUTES $$$$ 1
PTB: $$$ BEGIN PENDING ACTIVITY ATTRIBUTES $$$

PTB: pending activity > NOTHINGPENDING
PTB: pendingeventID => queue is empty
PTB: currentypending message => -1
PTB: alarmevent -ID -> queue is empty
PTB: alarmresumptionypriority 0> 0
PTB: exceptionname > NO EXCEPTION

PT: $$$$ END PENDING ACTIVITY ATTRIBUTES $$$$
PTB: $$$ BEGIN S ID W ACK ATTRIBUTES $$$

PTB: event ID => queue is empty
PTB: message => -1
PTB: queue => -1.

PT3: $$$ BEGIN SEMAPHORE ATTRIBUTES $$$
!!! TBD for now !!!

PTB: $$$$ END SEMAPHORE ATTRIBUTES $$$$
PTB: $$$ BEGIN TOOL INTERFACE ATTRIBUTES $$$

!!! null for now !!!

PTB: $$$END TOOL INTERFACE ATTRIBUTES $$
PTB: ***** END DUMP OF PROCESS TABLE ENTRY * I

I
I

238 CMU/SEI-89-TR-1 9

I
I

7. semaphoredebug

3I Sumphr yrint 1 I

I Ieahr~rn+-------------------------------------

I +--

7.1. semaphoreprint

7.1.1. Interface

3 semaphore_print (semaphore to print)

7.1.2. PDL

Announce self with message and print opening delimiter
Print address of semaphore head3 Print number of queued processes

For each queued process in the ordered enqueued loop
Print the logical name of the process

End loop

For each semaphore previously claimed by the owning process
in reverse claim order loop
Print address of semaphore head

End loop

Print closing delimiter

S7.1.3. Sample Output
* Contents of Semaphore ffdlf0

I [number_ofwaitingprocesses => 3

Enqueued process => process_1
Enqueued process => process_2
Enqueued process => foo

Previously claimed sema -> ddc0c7
Previously claimed sema -> efc010
Previously claimed sema => ff0143

2
ICMU/SEI-89-TR-1 9 239

I
I
I
I
I
I
I
U
I
I
1
I
I
I
a
3
I
I

240 CMU/SEI-89-TR-1 9

I

VIII. 68020 Hardware Configuration

I This chapter describes the DARK hardware testbed, in particular the MC68020 target

hardware and its configuration.

I
I
I
U
It
I
£
I
I
I
I
I
U
I
3 CMUISEI-89-TR-1 9 241

I
I

1. Target Processor Board
The DARK testbed has four processor nodes distributed across a network. Each node
comprises two processors: the Nproc and the Kproc. This chapter describes these
processors in more detail. The Motorola MVME133A board is used to implement both the 3
Kproc and Nproc.

1.1. MVME133A Board
The MVME133A is a single VME board computer module with many features required by 1
embedded system applications. Refer to the MVME133A-20 VMEmodule 32-Bit Monoboard
Microcomputer User's Manual for further details on this board.

This list summarizes the MVME1 33A features:

* 20MHz MC68020 32-bit microprocessor. 3
* 20MHz MC68881 Floating Point Coprocessor (FPC).
* 1 megabyte (MB) of shared dynamic RAM, 32-bit wide.

* 32-bit address and data bus VME master (A32/D32), and compatibility with I
A32/D1 6, A24/D32, and A24/D1 6. 4-gigabyte address space.

* Sockets for ROM, PROM, or EPROM chips, 256 kilobytes (KB) max.

* 1 user-programmable, 8-bit timer.
* Time-of-day clock, 1 Oms resolution.

* 1 asynchronous serial port, and two async/sync serial ports. I
* VME bus controller functions, master or slave.

* VME bus interrupter.

* VME bus interrupt-handler logic.

1.1.1. Local Memory 3
There is a total of 1 MB of Dynamic Random Access Memory (DRAM) on the MVME133A
board. It is shared so either the MC68020 or the VME bus master can access on-board
memory, but not at the same time. This memory is used to store the object code, but can I
also be accessed from the VME bus.

Each MC68020 access to on-board DRAM requires four clock cycles (200ns, three I
minimum plus a wait state). However, during the Read-Modify-Write (RMW) sequence it
may take more. 3
Local memory can have a different range of addresses when accessed locally or from the
VME bus. Memory is always accessed locally with addresses between 16#00000# and
16#1 FFFF#. However, this same 1 MB address space can be accessed relative to a
different base address that is set with jumpers.

242 CMUISEI-89-TR-19 3

I
I

1.1.2. Floating Point Coprocessor
The Motorola MC68881 Floating Point Coprocessor (FPC) is a full implementation of the
IEEE standard for binary floating-point arithmetic. It provides a logical extension to the
MC68020 microprocessor and operates at the same frequency, 20MHz.

1.1.3. Real-Time Clock
The Real-Time Clock (RTC) on the MVME133A is an MM58274 chip. It provides a

time-keeping function from tenths of seconds to tens of years. It can generate interrupts to
the MC68020 at regular intervals with a 0.1-second resolution.

1 1.1.4. Serial Debug Port
The Debug port is provided by a Motorola MC68901 chip. The connector for this port is
located on the front panel of the MVME133A board. It is an RS-232-C compatible port,
configured for Data Communications Equipment (DCE) only. It is called the Debug port
because when the debug ROMs are used, it is programmed to be used for interactiveU debugging. No other port may be configured for this purpose. The debug port may operate
at all the standard baud rates between 110 and 19,200.

3' 1.1.5. Serial Ports A and B
The MVME1 33A uses the Z8530 Serial Communications Controller (SCC) chip to implement3its two multi-protocol serial ports, which provide multi-function support for handling a large
variety of serial communications protocols. The Z8530 may be programmed to fol!ow
standard formats such as byte-oriented synchronous, bit-oriented synchronous, and
asynchronous. Port A of the Z8530 is connected to on-board RS-485/422 drivers and
receivers. Port B of the Z8530 is connected to on-board RS-232C drivers and receivers.3 The baud-rate clock for both channels may be obtained from several on-board sources.

Port A, with RS-485/422 drivers, is routed to the P2 connector. It may be configured by
software to be either master or slave and half or full duplex.

Port B, with RS-232C drivers, is also routed to the P2 connector. It may be configured3 either as DTE or DCE, by setting jumpers.

1.1.6. Timers
The MVME133A has four on-board timers. Three of them are not available to the
programmer, because they are assigned to do other functions; debug port baud rate
generator, tick timer, and watchdog timer. All of the timers are part of the MC68901 chip,Iwhich also provides a serial port (debug port), and general purpose I/O pins used for status
and control. The only timer available to programmer is eight bits wide and can be used for3 any purpose.

I
3 CMU/SEI-89-T flI19 243

1
U

1.1.7. Interrupts
The MVME1 33A board provides logic for interrupt handling and an interrupter. The interrupt 3
handler gives the on-board MC68020 the ability to sense and respond to all on-board and
off-board (VME bus) interrupts. The board may be jumpered to enable or disable any
combination of the seven interrupt request lines. I
The interrupter can generate interrupts on interrupt request level 3. g
1.1.8. ROM, PROM, EPROM, and EEPROM Sockets
The MVME133A has four IC sockets that are organized into two banks. These sockets
provide up to 256 KB of extra ROM. The sockets hold the debug ROMs or any other
user-programmed ROMs.

1.1.9. VME System Controller
The system controller on the MVME133A implements a level 3 VME bus arbiter, VME bus
requester, and Interrupt ACKnowledge (lACK) daisy-chain driver. The arbiter and lACK I
daisy-chain functions are designed to meet the VME bus specification.

The VME bus requester is used to obtain and relinquish master control of the VME bus. It '3
can request VME bus master control on any one of the four request levels depending on
how it is jumpered. It requests master control of the VME bus any time the MVME1 33A is
not the current VME bus master and the MC68020 indicates it requires access to the VME I
bus.

The control function arbitrates all VME bus requests so that only one requester of the bus I
actually gets control. The local microprocessor has to compete evenly with all other devices
to get master control of the bus. 3
The lACK daisy-chain function is a mechanism to acknowledge interrupt request in some
orderly fashion. Due to the way the daisy-chain works, the physical position of VME boards 3
in the chassis is significant.

1.1.10. P1 And P2 Connector 3
The MVME133A board attaches to the VME backplane at the connectors P1 and P2. P1
couples most of the required VME bus signals to and from the backplane. The P2
connector couples all of the optional VME bus signals and the signals for serial ports A and I
B.

I
I
I

244 CMUISEI-89-TR-1 9 3

I
I

1.2. Kernel Processor Board Configuration

3 This section lists all of the jumpers on the MVME1 33A board and indicates how they are set
for the board identified to be the Kernel processor. More detail on the function and location3 of each jumper may be obtained from the MVME1 33A user's manual.

* J1 - System Controller Enable Jumper - set to disable the system controller
function.£ J2 - Onboard RAM offset address select header - consists of four jumpers set
for an offset address of 16#200000#.

* J3, J4 - VME bus requester level select headers - consists of six and three
jumpers, respectively. These have been left in their factory settings to couple all
four bus grant lines through the board and establish a level 3 arbiter.

a J5 - RMW cycle type select jumper - has been left in its factory setting; the
processor must obtain master control of the VME bus to execute
read-modify-write accesses.

* J6, J7 - ROM/PROM/EPROM size headers - consist of three jumpers each.
These have been left in their factory settings and have been configured for the
Debug 133A ROMS.

* J8 - Global timeout jumper - no jumper installed. This jumper is only important
for boards that have been set up as system controllers.

e J9 - Reset switch jumper - set to enable the reset momentary button on the3 front panel.
e J10 - Abort switch jumper - set to enable the abort momentary button on the

front panel.3 * J1 1 - VMEbus interrupter jumper - set to enable the interrupter logic. Specific
instructions were given not to change this from the factory setting.

* J1 2 - VMEbus interrupt handler header - consists of seven jumpers. These
jumpers are set to permit the Kproc board to handle interrupt requests on
IRQ7,IRQ6,IRQ3,and IRQ1 lines.

e J1 3 - Serial port B configuration header - consists of 11 jumpers. These have
been left in their factory settings for port B to operate as a DCE device.

e J1 5 - Software readable header - consists of five jumpers. They are set
differently for each board. J15 can be read from software, and it is used to
indicate the physical number of the board.

* J16 - Serial ports RTXCx source select header - consists of two jumpers.
These have been left in their factory settings.

* J1 7 - VMEbus data width select jumper - may be placed in one of several
positions. It is set to indicate either a 16-bit or 32-bit, or both 16-bit and 32-bit
data path during VM'E I/O accesses. It has been left in the factory setting to
allow both 16-bit ano 32-bit width data.

e J1 8 - VMEbus address size select Jumper - is similar to J1 7, except it is set to
choose the size of the address on the VME bus, either 32-bit or 24-bits wide. It
is set for 32-bit wide addresses.

e El, E2 - Cache disable test points - may be wire-wrapped together to disable
the MC68020 cache. They are normally left untouched, but during performance
analysis, the cache is disabled to use the logic analyzer.

3 CMU/SEI-89-TR-19 245

U
I

1.3. Network Processor Board Configuration

This section covers the jumper settings for the Nproc board. Since most of the Nproc I
jumpers are set the same as the Kproc jumpers, only the ones that differ are listed. More
detail may be obtained on the function of each jumper by referencing the MVME133A Users
Manual

eJi - System controller enable jumper - set to enable the system controller
function.5

" J8 - Global timeout jumper - set to enable the global timer. This jumper is only
important for boards that have been set up as system controllers.

* J1 2 - VMEbus interrupt handler header - consists of seven jumpers. These

jumpers are set to permit the Kproc board to handle interrupt requests on IRQ5,
IRQ4, IRQ2, and IRQ1 lines.

" J1 5 - Software readable header - consists of five jumpers set differently for
each board.

I
I
3
I
I
I
I
I
I
I

246 CMUISEI-89-TR-1 9 3

I
I

2. Parallel Interface
I The network in the DARK testbed consists of segments of 32 parallel lines connecting

adjacent Nproc. The parallel interface used to connect the Nproc to each segment of the
network is the Mizar MZ8305 Quad Parallel Port module. Two of these modules are
required per node.

2.1. MZ8305 Board
3 The MZ8305 is a single height VME bus compatible board. It connects to P1 of the VME

bus backplane (upper connector). At the heart of the MZ8305 board are two Motorola
68230 Parallel Interface/Timer (PI/T) chips, designated #1 and #2. The board has a total of
32 bits of buffered parallel I/O and two programmable timers. Refer to the MZ8305 Quad
Parallel Port Module User's Manual for more details on this board.

3 All on-board addresses are mdpped to a 16-bit I/O address space. The base address can
be jumpered to any 256-byte boundary. All of the registers on the MZ8305 are contained in3 the two PI/Ts. Each PI/T has 32 8-bit registers.

There are four interrupt sources on the MZ8305. Each can be jumpered to drive any one of3 the VME bus 7 interrupt request levels. However, no two sources can drive one line.

3 2.2. Parallel Interface/Timer
Both 68230 PI/T chips have three 8-bit ports, designated ports A, B, and C; one (port C) is
used for controlling associated interrupts, buffering logic, and handshake lines; and two
(ports A and B) are used for parallel I/O. The parallel ports can be programmed for input,
output, or bi-directional I/O. There are two handshake lines per I/O port, designated H1, H2,
H3, and H4. The PI/T can be programmed to generate interrupts when data are received at
port A or B.

Each PI/T also has a 24-bit programmable timer, which may be programmed to generate
interrupts periodically, or after a specified period of time. The timer input clock may come
from an external source, through one of the parallel I/O connectors, or from on-board3 circuitry at one of the following frequencies: 500, 250, 125, or 67.5 KHz (2, 4, 8, 14.8 gsec
periods, respectively).

1 2.2.1. Parallel I/O Connector
The MZ8305 board has two 50-pin connectors, designated J1 and J2. These connectors
provide access to the I/O and handshake lines, the timer input clock, and timer output for

each PI/T.

I
5 CMU/SEI-89-TR-1 9 247

U
I

2.3. Input Port Parallel Board Configuration

This section covers the jumpers on the input parallel port board. Many of the jumper 1
settings are the same on both the input port and output port boards. The function of each
jumper is explained in more detail in the hardware reference. MZ8305 Parallel Interface
Board User's Manual. The following is a list of all the jumper blocks and their settings for
this board:

" K08 - Address select - All jumpers are left installed so that the base addresses U
for PI/T #1 and #2 are 16#FFFF0040# and 16#FFFFOOOO#, respectively.

" K09 - Interrupt request - The jumpers are wire wrapped so that P1 is
connected to IRQ4, P2 is connected to IRQ5, Ti is connected to IRQ7, and T2
is connected to IRQ6.

" K05 - Interrupt ACK for PIO - Jumpers are installed at A02 and A01 for PIRQ1
and at A02 for PIRQ2.

" K06 - Interrupt ACK for timers - A jumper is installed only at A01 for Tout2.

" K04, K1 0 - Toutl/'out2 enable - Both these jumpers are installed. 3
" K01 - Toutl/rout2 and buffer control - Only four jumpers are installed. They

connect pin 3 to 13, 6 to 16, 7 to 17, and 10 to 20.

" K03 - Tinl/Tin2 input enable - Both jumpers are removed.

" K07 - Timer frequencies - One jumper is placed so that Tin1 and Tin2 connect,
and a second jumper is installed to connect Tin2 to 500KHz. 3

* K02 - H2/1H4 direction - All jumpers are installed so that the handshake lines
operate in the out direction.

2.4. Output Port Parallel Board Configuration

Only one jumper is set differently on the output port parallel board from those on the Input
Port Parallel Board configuration:

K08 - Address select - One jumper has been removed from the factory setting
(All) so that the base address for PI/T #1 is 16#FFFF0140# and for #2 is
1 6#FFFF01 00#.

2
3

248 CMU/SEI-89-TR-1 9 5

I
I

3. Shared Memory
I This section covers basic information on the shared memory boards. The testbed uses

Motorola MVME225-1 shared memory boards for the global memory on each processor
node. This board is a full height VME board with 1 MB of DRAM. Refer to the MVME225-1
1Mb Dynamic Memory Module User's Manual for more details on this board.

The processor boards are designed so that the local processor always sees its local
memory at the same location (starting at 16#00000000#). However, from off-board, the
memory appears at a different location. Because of the different address mappings, the two
processors are never able to see the same memory location using the same address. This
would only be possible with a separate memory board such as the MVME225-1.

3 The bas' address of the shared memory is set with jumpers. Since the board doesn't
support parity, a jumper must be installed to disable parity checking.

3.1. Shared Memory Board Configuration

3 The shared memory board has four jumper blocks. This section covers how they have been
set to operation in the DARK testbed.

" K4 - Test Connector - Pins 15 and 16 are jumpered to disable parity checking,
since the MVME133A processor boards do not check or generate parity
information.

" K3 - Address Mode Select - All jumpers are removed to select continuous
address space.

* K1, K2 - Address Select - Jumper A20 is removed to set the base address of3 the memory at 16#100000#.

9
3
I
I

3 CMU/SEI-89-TR-1 9 249

U

4. VME Chassis I
The DARK testbed uses four Motorola MVME945 chassis to hold all of the processor node 1
hardware, namely two MVME133A CPU boards, shared memory board, and two MZ8305
Quad Parallel Port VME modules, as shown in Figure 36. The MVME945 chassis is
designed to house industry standard VME modules, and may be used for desk-top or
rack-mounted operation. The VME945 card cage holds up to 12 full height VME boards.
The boards are inserted into guides from the front of the chassis. On the rear of the
chassis, the P2 connectors can be accessed for connecting I/O cables or setting bus
jumpers. Refer to the MVME945 Chassis User's Manual for more details on the location
and function of the jumpers. 5
The power supply is approved for 400 watts. It requires one 115 VAC uutlet, and supplies
the following voltages: 3

0 +5VDC@50A
* +12VDC@ 10A

o-12VDC@ 5A

The chassis contains a 12-slot, 32-bit VME bus backplane and provides forced-air cooling 3
for the VME modules. The VME modules are cooled by air drawn in from the bottom of the
chassis by two fans, forced past the VME modules, and blown out the top of the chassis.

CII___ t____ ______ " I
I

Figure 36: Chassis Hardware 3

I

250 CMU/SEI-8g-TR-1 9 3

I
I

4.1. Backplane Jumper Configuration

I Each of the 12 P1 connectors, except slot 1, has two sets of jumpers that have to be
configured for any of the boards plugged into the backplane to operate correctly. Jumpers
are required in all empty slots and are removed for slots containing boards. The jumpers
pass signals through each empty slot and on to the next.

3 The following is a list of the sets of jumpers:

" Bus Grant Signal headers, J3 through J12 - have four jumpers BGO, BG1,
BG2, and BG3. These signals are part of the bus arbitration logic and are
necessary to control which device gets control of the bus.

" The lACK Signal headers, J13 through J23 - has only one jumper each. These3 jumpers are used to form a daisy-chain for acknowledging interrupts.

The five VME boards are assigned to slots in the chassis. The order of the boards
determines part of their bus request and interrupt p,'iority. The only absolute requirement is
that the system controller be in slot 1. The order in which the boards are inserted into the
chassis in the DARK testbed, from left to right:

3 1. Slot 1 - Nproc MVME133A processor

2. Slot 5 - Kproc MVME1 33A processor
3. Slot 10 - Shared Memory MVME225-1
4. Slot 11 - Input Port Parallel Interface MZ8305
5. Slot 12 - Output Port Parallel Interface MZ8305

Again, except for slot 1, which does not have any jumpers, all of these slots have their
respective jumpers removed, so the signals do not bypass boards.

2
3
I
I
U
I
3 CMU/SEI-89-TR-1 9 251

I

5. Equipment Rack
The four VME card chassis are mounted in two 19-inch equipment racks. Two doors, I
located on the front and rear, provide access to the chassis mounted inside. The front door
is tinted Plexiglas, while the rear door is sheet metal with ventilation holes. The chassis are 3
mounted horizontally, one on top of the other, as shown in Figure 37. The rear door permits
access to the rear of the chassis and the cabling between each processor node. One
surge-protected, mufti-plug, power strip distributes AC power to two chassis in each rack. 3

~I

S3 t" R kI

I/Ii

l= I

Figure 37: Equipment Rack 3
I
I
I
I

252 CMU/SEI-89-TR.1g 9

I
I

6. Host System
I This section discusses the host system used to develop and download the Kernel and

application.

The host system consists of four jVAX-Il computers clustered together and tied into the SEI
local area network. They are called DARKA, DARKB, DARKC, and DARKD. DARKB abd
DARKC are the only pVAx-Ils connected to the processor nodes, as shown in Figure 5. The
others are only used for code development. Four serial communication lines (debug port
and a downloading port for the Kproc and Nproc) run between each node and the DARKC
pVAX-II.

During the development process, the host machines provide support for many activities.
The software is created on a project member's workstation, then transferred to one of the
hosts, or entered directly on a host. After compilation and linking, the executable images3 are downloaded using either the Debug ROM downloader, or Telesoft's download facility.

Using both the debug ROM and Telesoft's Ada development system, it is possible to debug
software while it is on-line and operating. The debug ROMs provide only basic debug
operations, while the Telesoft symbolic debugger is more versatile and able to show how
execution is proceeding relative to the Ada source code.

U An alternative means of downloading, called VMSLink, is also available. It consists of
VMSLink software, which can be run from any host machine in the cluster, and an ethernet

i board in each chassis.

3 6.1. Serial I/O Ports

Two out of three ports available on each processor board are used during the development.3The debug monitor and TeleGen2 runtime use the debug port, and the TeleGen2 download
system uses port B. The host system is not connected to Port A on either the Kproc or
Nproc.

In total, there are 16 serial lines connected to the host system. To handle all of the these
serial lines, DARKC is equipped with two DHQ1 1 serial cards. There are three cards (two
installed in DARKC ?nd one in DARKB) that provide a total of 24 asynchronous serial lines
for the host system.

3 Figure 38 is a cross reference between DARKC host ports and the serial ports on the
processor boards in the testbed. For example, CPU 0 is the Kproc on Node 0. The TXAO
port of DARKC is connected to the debug port on CPU 0.

I
3 CMU/SEI-89-TR-1 9 253

CPU # Processor Node Name Debug Port Download Port3

CPU 0 Kproc Node 0 TXAO TXBO

CPU 1 Nproc Node 0 TXA1 TXB13

CPU 2 Kproc Node 1 TXA2 TXB2

CPU 3 Nproc Node 1 TXA3 TXB33

CPU 4 Kproc Node 2 TXA4 TXB4

CPU 5 Nproc Node 2 TXA5 TXB53

CPU 6 Kproc Node 3 TXA6 TXB6

CPU 7 Nproc Node 3 TXA7 TXB73

Figure 38: VAX Ports to Testbed Ports Cross Reference

254 MU/SI-89TR-I

U
I

7. Test Equipment
This section covers the test equipment used to debug, monitor, and measure performance
of the Kernel and the application. Electronic test equipment is used in the DARK Project for

I several activities, including:

e Measuring performance3 *Troubleshooting hardware problems
e Monitoring software efficiency
a Debugging software

During DARK software development, the performance of critical sections of Kernel code are
measured, and if not found to be satisfactory, optimized. The test equipment is used as a
tool to help fine-tune the Kernel's performance. The final performance measures are taken
and used to compare against the required performance measures recorded in the Kernel3 Facilities Definition.

The test equipment is used to help isolate problems when hardware components fail.

3 The operational behavior of the demonstration application running on DARK will be fully
understood only when it has been implemented and tested. The test equipment is used to
locate and verify correction of certain efficiency, or timing, problems. The test equipment
also has the capability to help trace and debug certain kinds of logic errors.

I 7.1. Test Equipment Hardware
3 The DARK team had several different pieces of test equipment available for use, including:

* Tektronics 2223 Analog Oscilloscope
e Gould K1 15 Logic Analyzer
e Gould Microprocessor disassembly pod
* Gould CLAS 4000 with support for 2 MC68020 boards.3 Tektronics 2432A Digital Storage Scope
* Volt Ohm Meter

3 e XYComm VME Board Extender

I
I
I
3 CMU/SEI-89-TR-1 9 255

U
I

8. Low-Level I/0
The Kproc and Nproc software accesses features of the target hardware through low-level
I/O. Low-level I/O is necessary for two reasons. First, the compiler may not provide facilities
required to accomplish a needed hardware operation. Second, although such facilities may I
be provided, they may not satisfy performance requirements of the application or the Kernel.

Low-level I/O is usually necessary to access special status information controlling the I
operation of devices on the target hardware, or for access memory directly. Status may be
needed for such things as determining the state of a device, synchronizing with another
device, detecting error conditions, or polling. The target hardware has several devices that
must be controlled through low-level I/O by setting or changing the mode of a device,
sending interrupts, or setting status in some port or device register. 3
Low-level I/O is accomplished through read or write operations to registers or memory
locations. The MVME133A 68020 processor board is designed so that all device registers
are mapped, or assigned, to have addresses in the address space of the MC68020
microprocessor.

Since the software that performs low-level I/O operations is highly dependent on the target I
hardware, it has been isolated to several Ada packages.

The following devices are part of the MVME133A 68020 microprocessor board and are
involved in low-level I/O operations:

" Local ROM banks I
" Local dynamic RAM
* Multi-Function peripheral - MFP 3
" Module Status Register - MSR

" Serial I/O port B - SlOB

" Serial I/O port A - SIOA
* Real-Time Clock - RTC

" Interrupter 3
" Parallel Interface and timer - PIVT

These devices are listed in the order they appear in the address space of the MVME133A 5
68020 microprocessor. The devices external to the the MVME1 33A board (e.g., PI/T) exist
at higher addresses than the interrupter. 3
Each processor board (Nproc and Kproc) in a node has its own devices to control. The
Kproc uses low-level I/O to access the shared memory. The Nproc uses low-level I/O to
control the four 68230 Parallel Interface/Timer devices on two MZ8305 parallel interface I
boards and also to access shared memory.

I

I
I

8.1. Software
U The Telesoit compiler provides support for low-level I/O in three basic ways: Machine Code

Insertion (MCI), address clause, and imported subprograms.

MCI is provided through a package called Machine Code. MCI allows single machine
instructions to be inserted in-stream of the Ada source code. The compiler will make sure
that the inserted low-level machine instructions are placed in the appropriate place among
other machine instructions generated as a result of the high-level Ada statements. The
Telesoft MCI supports all of the machine instructions available for the 68020
microprocessor.

The address clause for objects may be used to access hardware memory, registers, or other

known locations. Symbolic names may be given to physical memory locations and
accessed as if they were variables using the address clause.

5 The Ada programming language defines a pragma "interface" that allows Ada to interface
with subprograms written in other languages, including assembly. The pragma interface3 statement declares a subprogram that will be imported and used in the Ada source code.

I
I
I
I
3
I
I
I
U
I CMU/SEI-89-TR-1 9 257

I
U

9. Interrupts
The mechanism for initiating and handling interrupts on the VME bus and MC68020
processor is well established and documented; therefore only a few important details of
interrupt handling and the arbitrary and specific assignments made for the DARK hardware I
implementation are covered in this section. Refer to the MC68020 32-Bit Microprocessor
User's Manual and VMEbus Specification document.

9.1. Interrupt Request Levels 3
Each interrupt source interrupts on one of seven interrupt request lines (IRQ1 -IRQ7). These
lines are prioritized, with IRQ7 having the highest request priority. Some of the interrupt
sources have been permanently assigned to a particular request level. The rest may be
assigned through jumpers (with some limitations). Generally, more than one interrupt
source may be assigned to one interrupt request level. 3
There are jumpers on each processor board to connect each interrupt request line from the
VME bus to the boards' interrupt handling logic. Since the function of the Kproc and Nproc
differ, the two boards' interrupt request lines are jumpered differently. All on-board
interrupts bypass these jumpers.

9.2. Interrupt Vector Numbers
During interrupt processing an interrupt vector number is obtained for each acknowledged
request. An interrupt source either provides its own vector number or one is generated for it
based on the interrupt request line it issues the request on. The processor uses the vector 3
number to associate an interrupt service routine with the interrupt source. Each interrupt
source must have a unique interrupt vector number, unless the service routine handles more
than one interrupt source with respect to one processor.

9.3. Interrupt Configuration Summary I
Figure 39 summarizes how the different interrupt sources are configured with respect to

interrupt request levels and interrupt vectors. If a particular device is shown once when in
fact there is more than one, all have been configured the same. For example, in one
chassis, there are two MC68901 devices (one on each processor board). Both are set up to
have the vector numbers shown. This does not conflict with the rule about unique vectors
for each interrupt source, because these are local to a processor board, and the other
processor cannot respond to them. On the other hand, the interrupts from the parallel

interface boards must be unique across the VME bus, because both processors can
potentially respond to these interrupts.

258 CMU/SEI-89-TR-19 I

I
I
3 Interrupt Interrupt Interrupt

Board Name Device Source Vector Request Level
Parallel I/O "in" Port

M PIO 16#42# IRQ4
Timer (24A) 16#44# IRQ7

i MC68230 PVT #2
PIO 16#4A# IRQ53 Timer (24B) 16#4C# IRQ6

Parallel I/O "Out" Port
MC68230 PI/T #1

PIO 16#52# IRQ4
Timer (24C) 16#54# IRQ7

MC68230 PI/T #2 PlO 16#5A# I RQ5
Timer (24D) 16#5C# IRQ6

I Kproc & Nproc

Abort Logic 16#1 F# IRQ7

I ACFai Logic 16#1 F# IRQ7

MC68901 MFP

Timer (8A) 16#6D# IRI5
Timer (8A) 16#68# IRQ5Tie 8) 16#6# IRQ5
Timer (8C) 16#65# IRQ5
Timer (8D) 16#64# IRQ5

Z8350 SCC
Port A TX 16#78# IRQ6
Port A RX 16#7C# IRQ6

3 MM58274 Real-Time Clock 16#1 C# IRQ4

Interrupter Logic 16#FF# IRQ3

I EXOS 202
Ethernet Driver Unknown IRQ6I

Figure 39: Interrupt Summary

I
I

10. Memory Map
Figure 40 lists all of the major devices and their base address assignments. Each
assignment is identified as either hard-wired or jumpered. The hard-wired addresses may

not be changed; the jumpered addresses may change.

Addresses are assigned so they do not conflict with each other. All of a processor board
devices, except memory, are not visible to the other processor (off the board). This means,I
for example, that the real-time clock on each processor board can have the same address.

Board Name Reference Address RangeU

Kproc & Nproc Local Memory 16#00000000# - 16#OOOFFFFF#

Memory Shared Memory 1 6#001 00000# - 1 6#001 FFFFF# 9 I
Kproc Nproc Memory 16.#00200000# - 16#002FFFFF#

Nproc Kproc Memory 1 6#00300000# - 1 6#OO3FFFFF#3

Kproc & Nproc Module Status Register 16#FFF80000# 10

Kproc & Nproc Multifunction Peripheral 16#FFF80001# 11

Kproc & Nproc Serial Communication Controller 1 6#FFFAOOOO# - 1 6#FFFAOOQ3#

Kproc & Nproc Real-Time Clock 16#FFFBOOOO0#3

Kproc & Nproc Interrupter Logic 16#FFFB8000#

Parallel 1/0 'In" Port PI/T #1 16#FFFF0040# - 16#FFFFOO6F#

Parallel 1/0 "in" Port P UT #2 16#FFFFOOOO# - 16#FFFFOO2F#
Parallel 1/0 "Out* Port PI/T #1 16#FFFF01 40# - 16#FFFFO1 6F#

Parallel I/0 "Out" Port PI/T #2 16#FFFF01 00# - 16#FFFF01 2F#
EXOS 202 Status Register 1 6#FFFF8000#

Figure 40: Memory Map

OShared memory is accessed over the WME bus in this address range by both the Nproc and Kproc.1

1 0 This is the first of many even-valued addresses at which this register can be referenced.

"This is the first address of a group of registers.

260 CMUISEI-89-TR-1 91

I

I 11. Network Cable

The network data path extending between each node is made of two flat ribbon cables.

These cables are specially constructed to handle the handshake lines and terminate unused

* pins.

All eight pieces of flat ribbon cable (two per node-to-node segment) are constructed the

same. Signals H1 and H3 on both ends are crossed to H2 and H4 en the other end,

respectively. Signals Tin and Tout on both ends are not connected. See Figure 41 for a

schematic of the cable.I
I H4 H4
2 G ."D GNID 2
3 GN OO)

G.__ _ _ OND-H13 P3 H3
6 GND GND 6
7 M O! Tn 3 - Tin 7

I6 O.ND GND -- 16

9 P87
P87 9GND G4D 101 P86 P86 --

12 GND GND - 12
13 P15 PB5 13
14 GND GMD 14
IS P84 P94 15
16 ND GND 16
17 PB3 P93 17
18 G.'D GNO is
19 PA2 PA2 19
20 GND GND -- 20
21 Pal Psi 21
22 GND GND Z 22
23 PRO P80 23
24 OND G1ND 24
21 PA7 PAl 2
26 ON!" G5) 26
27 PA6 PA6 27

23 GDON! 22
29 PA5 PA5 29
30 ONO GN - 30
3 ' PA4 PA4 - - 31
32 ON!) OND - 12
33 PA3 PA3 33
34 G %D OND 34
35 PA2 PA 35
36 ON!) ON!) 36
37 PA' PAI 37
34 GN!D GND 38
39 PAO PAO 39
40 GND GND- - 40
41 NiUd No1 FUsd - - 41

42 ON!) GKID- 42

ON!)G14

49 Tnr a - . Tout 49

I
I

Figure 41: Flat Ri bbon Cable Schematic

I

ICMU/SEI-89-TR-1 9 261

I
I

12. Synchonization Bus
The synchronization bus, or "sync bus" for short, is used to provide a way to broadcast time
for the Kernel during time synchronization. All of the Kprocs on the network are connected
to the sync bus. 3
The Kernel software that processes the time synchronization event is interrupt-driven. So,
when synchronization occurs, all Kprocs respond immediately with the minimum amount of
delay.

12.1. Bus Description I
The interface to the sync bus is made through port A on the P2 connector on the Kproc 3
board. Port A is one of two serial ports on the Z8530 SCC chip. Unlike port B, which uses
RS-232C line drivers, port A uses RS-485/422 line drivers. This particular line driver permits
one master (at a time) and multiple slaves.

The sync bus consists of two wires that carry a differential voltage, asynchronous serial data
signal.

Figure 42 is a schematic of the sync bus (also refer to the schematic of the P2 connector in
Figure 43). The sync bus schematic shows how the two wires of the bus are connected to I
the Send Data (SD), and Receive Data (RD) lines of port A's RS-485/422 drivers. Note that
the SD -nrid RD lines are connected together at the bus cable. This is so that the master can
monitor ior data collisions that would result if another Kproc attempts to become master at
the same time.

The monitoring is required because the designers of the MVME133A board did not i
implement all of the RS-485/422 handshake signals, such as RTS, CTS, and DCD. If, in the
future, the Kernel is ported to another target and this same approach for time 3
synchronization is used, a more complete implementation of the RS-485/422 handshake
signals is recommended.

12.2. Bus Operation a

The relative frequency of time synchronization should be low. Normally, when no
synchronization is in progress, all the Kprocs are set for slave operation. Port A is set for
slave operation when: 3

" Transmitter output signal is electrically isolated from the SD signal lines.

" Receiver data input is monitoring the RD signal lines.

" Receiver interrupts are enabled.

When there is a call to synchronize time by an application process, the Kernel does several 3
262 CMU/SEI-89-TR-1 9 I

I
I
I

I
Download Port

DB25 Port B

Male RS-232CConnector C B A

00 TX 000
0 2-C ----->- 2c-- 0 0

,. R)M 3c- O 0 0 Node0

00RTS 4c- 0 0 00 0.- 5CTS c - -0 0 O0

0 0 -6 DSR 6c- -0 0 0
0GND 7c--000

0 .8DCD $€- -0 0 O0
00 000 Po A

S0 000RS-4522
0 0 0 0 0 (TwuA-p&Lr cable)

0 0 0 0 0 Node

0* 0 0 0-13 SD'00 14c SD-

d 00 16000

0 004=
0 0 0

96-pin DIN 0 00--20a

male onnector 0 00

(wire-wrap tads) 0 0 0--22a GNDI0 0 0 1e vS),nchrzxuaZAuo
0 0 0 Remoteres Bus cable

0 0 0 i5nes (Twisted pair cabc)

0Or 00

0' 00

0O0O0 NodeOOO
00010 00I OO

I
Node 3.

I
Figure 42: Kproc to Synchronization Bus Interface

3 CMU/SEI-89-TR-19 263

Kproroc

Node 0de Node 2 Node 3

MVME13A Boar

Z8530RS-485/422
S Line driversI

SDI
TY.DI

Figur 43:P2 Cale Hrnes Schematic

264 CMU/SEI-89-TR-19

I
I

operations. One of the last is to assert port A mastership. This must be done before the3 time information can be broadcast to the other Kprocs. Port A mastership is attained by
having:

* Transmitter output signal connected to the SD signal lines.
* Port A receiver interrupts disabled.
* Port A receiver input monitoring the RD signal lines.

A test byte is put onto the sync bus to verify that no other port is asserting itself as master.
The receiver is checked to confirm that the byte received is the byte sent. In the meantime,
all of the slave ports respond to the test byte by interrupting its associated Kproc, and then
preparation begins to receive a new time to synchronize on. If the test byte is not received
correctly, appropriate actions are taken.

I
I
I
I
I
I
I
I
I
U
I
I CMUISEI-89-TR-1 9 265

I
U

13. P2 Backplane Connector Wiring
The schematic in Figure 43 is of the connector that is made to plug into all the processor's
P2 sockets on the VME backplane of the chassis. This connector and cable harness
provide access to several interface signals made available at P2 from the MVME133A
board. The interfaces include:

* Port A RS-485/422 serial lines

* Port B RS-232C serial lines

* Remote Reset control lines

Port A is used for connecting to the synchronization bus; Port B is used for the download
port and connects to the host system. The remote reset control lines provide a way to
remotely perform a reset of the processor.

There are eight identical harnesses, and all of them are identical. The port B lines on the
Nproc's are not connected to anything.

II
I
I
I
I
I
I
I
I

266 CMUISEI49-TR-19g I

I
I

IX. TeleSoft Ada Compiler Dependencies

This part lists and explains those aspects of the DARK software artifacts that are dependent
on the specific Ada compiler used. To assist with the porting and maintenance process, this
part explains the ways in which the DARK software depends on the specific Ada

3 development systems used.

I
I
I
I
I
I
I
I
I
I
I
I
I
I CMU/SEI-89-TR-1 9 267

U
U

1. Major Dependencies
The DARK software exhibits dependencies on the Ada development system in three major
areas: 3

" Aspects of basic software architecture and design

" Representation and use of basic data types

" Encapsulation of hand-coded assembler

These will be discussed at successively greater levels of detail. 3

1.1. Software Architecture and Design
Some aspects of the DARK architecture were constructed, in part, to build on known
strengths of the Ada system and avoid known weaknesses.

For example, the decision to represent execution-time errors by Ada exceptions was taken,
in part, because the compiler handled guarded regions very efficiently. As another example,
the DARK software avoids records with discriminants entirely because of demonstrated I
implementation inefficiencies.

These decisions require review if the software is to be moved to another Ada system. In U
most cases, we believe we have not made it impossibly difficult for the porter to modify, or
even reverse, the most significant architectural decisions. 3
The DARK architecture is discussed in detail in Chapter 3. I
1.2. Basic Data Types
The DARK software is largely embedded systems code, and as such must interface closelyI
to the target machine in many places. It must be able to manipulate basic date types,
memory addresses, device registers, and similar low-level target entities. As far as
possible, it must do so robustly and clearly, through the medium of the Ada language.

The software therefore uses Ada representations of basic machine objects, defined as data
types with necessary operations. These Ada definitions depend on the Ada compiler's own
view of the machine, as captured in the package System. A different compiler, for a
diffe-ent or even the same machine, may take a different view, and in consequence the 3
DARK definitions might need to be changed.

The required data types are given in detail in Chapter 4. The specific definitions used on 3
each target are given in the appendices.

I
268 CMU/SEI-89-TR-1 g I

I
I

1.3. Encapsulation of Assembler
The DARK software contains some small modules written by hand in the target assembler
code. For example, the DARK scheduler's basic context save and restore operations
manipulate target machine state directly, and hence must be written in machine code.

In order for these modules to interface properly with the Ada code in which the rest of the
Kernel is written, the compiler conventions must be relied upon in great detail. If a different
compiler uses different conventions, the encapsulated assembler will have to be changed.

3 Note that this is a separate issue from the issue of recoding the modules for a new target.
For example, another Ada compiler on the same target might define a different procedural
interface, passing parameters in a different way. The called module would remain MC68020
Assembler, running on the same hardware, but would still have to be modified.

The conventions that must be understood and observed are given in detail in Chapter 5.
The specific conventions used for each target are given in the appendices.

II
I
I
I
I
I
I
I
I
I CMUISEI-89-TR-1 9 269

I
I

2. Software Architecture and Design Dependencies
This chapter gives the main compiler dependencies, explains the reasons behind them, and
indicates what modifications might be feasible as a consequence of a port or compiler
upgrade.

2.1. Code Customization n

The most obvious and pervasivt compiler-dependent architectural feature of DARK is the
manner in which it allows customization of the code by acceptor sites and other users. The i
bulk of this customization involves the enabling and disabling of error checks.

The DARK model is the following: i
" Error-checking code can be included in the Kernel, or excluded from it, at the

option of the acceptor site.
" The inclusion of the code is controlled by a conditional statement, wherever

possible at the outermost level of nesting within the relevant procedure.
" The condition driving the conditional statement is a generic formal parameter of

the package, of a simple scalar type.

" Customization involves instantiating the package with a corresponding generic
actual parameter that is an explicit constant.

The DARK model relies on these features of the Ada compiler:

o Generic instantiation is performed by code substitution at compile time.

* Constant actual values are substituted for the formal parameters, and simple
constant comparisons will be done at compile time.

* Code guarded by conditional statements that are known at compile time to be
false ("dead code") will be removed by the compiler and will not generate any
object code. (This is not necessary for correct functioning of the Kernel, but 1
makes it smaller and faster.)

These simple mechanisms are found in many Ada compilers, and they are accepted by the
Ada community as a conventional way of achieving "conditional compilation" in Ada.
However, should a compiler not support them, the customization cannot be achieved in this I
way. The brute-force alternative is to edit the Ada source code to remove any unwanted
code; to help achieve this, all source code lines dealing with removable error checking are
individually commented. 3

I

27C; CMU/SEJ-69-TR-1 9 i

I
I

2.2. Representation of Errors
As discussed above, the DARK primitives can be customized to detect and report various
execution-time errors. There are also some error conditions that cannot be suppressed,
either because they are part of the semantics of the primitive or because continued
execution in their presence would be impossible.

The Kernel systematically represents error conditions by user-defined exceptions, and

reports them by raising the exception, presumably to be handled by the invoking code.

3 For this to be feasible, certain compiler features are assumed:

" The execution cost of guarded regions and unraised exceptions is very small,
preferably zero.

" The cost of raising and propagating an exception is reasonable; in particular, it
is not so great as to prevent timely recovery by the exception handler.

Se The exception mechanism can function safely and accurately in the context of a
DARK process.

The first two assumptions can be verified by studying the compiler documentation or (at
worst) its output. The third assumption must be tested more carefully, with these issues in
mind:

e *dDoes the fact that a DARK process executes on its own stack affect exception
semantics?

* Will the process "stack plug" effectively prevent exception propagation out of a
process?

* Can exceptions propagate correctly out of, and through, any hand-coded
* assembler subprograms?

* Is the propagation mechanism re-entrant at the DARK process level, so that a
process can be sliced during exception propagation?

If, for any reason, it is felt that the exception mechanism should not be used to indicate
errors, then the Kernel code could be changed, albeit at some cost, to use status codes
instead of exceptions. The information recor,; for a DARK process contains a component
that can be set to indicate an error condition. This component is used internally by the
Kernel scheduler and context switch routines, but it would be straightforward to add an
enquiry function that allowed a process to interrogate its own error status.

The one DARK facility that relies absolutely on the exception mechanism is the alarm, no
other reliable means exists in Ada for aborting execution of linear code and transferring
control to another part of the same process. It might be possible to revise the alarm
semantics so that control is transferred to an Ada-labeled statement, but that is both poorer
methodology and a less portable solution.

I CMU/SEI-89-TR-19 271

I
I

2.3. Module Initialization
The Kernel is structured into several modules in a dependency graph of several levels.
Many of these modules contain data structures or device-handling code that requires
initialization.

The current implementation tries as far as possible to use explicit initialization procedures
called explicitly from the top-level modules. It restricts "automatic" module initialization, i
done by the statement sequence of the package body, to as few modules as possible. Also,
it does not assume any specific order in which automatic initialization will be done. n

This strategy should be robust against compiler differences in package elaboration order,
and should work correctly without the acceptor site having to change module dependencies
or introduce pragma Elaborate. However, the developers found some very subtle I
elaboration order problems, so they cannot assert the problem is completely solved.

However, there are some initialization dependencies between processors comprising a I
DARK target network. In particular, the communication mechanism must be initialized and
ready before the rest of the Kernel can begin execution; since on the first target the
communication is done by separate processors running separately linked programs, this
dependency cannot be captured in the Ada code. In addition, most Kernel internal data
structures, and some visible to the application, rely on the Ada facility that allows explicit or 3
default initialization of declared objects.

Correct initialization of the Kernel must be checked as part of the test of the port.

2.4. Chapter 13 Issues U
Those parts of the Kernel that manipulate the target machine rely to some extent on the
features provided in Chapter 13 of [ALRM 83]. If any of them are absent, it will not be easy
to find alternative strategies, since the implementors have used these features only when
they believed them essential.

The specific features used, and their purposes, are:

" Size specifications [13.2(a)] to force the compiler to use operations of the
correct size for a hardware device register. Failure to do this will cause a
hardware memory reference trap.

" Record representation clauses [13.3] to construct Ada objects with the exact
layout required by hardware devices. They are also used to specify the layout
of objects transferred between processors. If this cannot be done, the
device-handling code, and its associated data structures, must be rewritten in
assembler.

" Address clauses [13.5] to place objects shared between processors in explicit
places in shared memory. If this cannot be done, the same effect might beachievable via the linker. As a last resort, address binding can be done by
using access objects set by hand to designate the correct memory addresses.

272 CMU/SEI-89-TR-19 i

I
I

" The package System [13.7] for the basic machine types, as explained in the
next chapter.

" The system-dependent named numbers [13.7.1], to obtain the extrema of the
basic types.

e The attribute 'Address [13.7.2], to compute the addresses of both subprograms
and data objects. This is essential if the Kernel is to be ported, since, for
example, it must be able to take the 'Address of a subprogram that is to be a
process, and the 'Address of a data object whose contents is an inter-process
message.

" The attribute 'Size [13.7.2] of basic types and of arrays, to allow the Kernel to
I compute and allocate storage.

" The machine-code insertion facility [13.8], used very sparingly.

" The pragma Interface, to allow the Kernel to invoke machine-code subroutines.
This is essential.

" The pragma Inline, for subprograms whose bodies are small enough. It is
especially used for shell procedures that merely call other lower-level or more
general procedures. This is not essential, but allows a good compromise
between execution efficiency and functional abstraction. The Kernel assumes
that, if the pragma is provided, it can be used to inline across compilation unit
boundaries.

*The generic UncheckedConversion [13.10.2] for several low-level purposes,
as explained in the next chapter. It is probably essential that this facility work,
and work with high efficiency, on all simple types.

There is very little in the way of a contingency plan should some of the above language
features be absent. In general, they provide facilities that cannot be obtained in any other
way, and that are an essential part of much embedded systems programming.I
2.5. Pragmas

i The Kernel uses the following standard pragmas:

" pragma INLINE. This is not necessary; it is used to gain some extra efficiency
by hoisting small routines. The structure of the code assumes that the pragma
works across separate compilation boundaries. As a result of a restriction in
the compiler used to develop the Kernel, this pragma is never applied to the
result of instantiating a generic subprogram. One consequence is that
instantiations of uncheckedconversion have almost always been hoisted by
hand into package specifications.

" pragma INTERFACE. This is used to allow the Ada code to call lower level
routines written in machinp code, as explained in detail in Appendix D.

I
I CMU/SEI-89-TR-1 £ 273

I
I

2.6. Ada Use Subset

As well as making certain assumptions about what the Ada system does provide, the Kernel I
was designed and written under certain assumptions about what it need not provide. In
effect, it employs an application subset of the language, avoiding constructs that the
implementation team believed either unnecessary or possibly inefficient.

These assumptions should not affect a port, since in general they have led to simpler and
more straightforward code. They are recorded in full in a project-specific Ada style guide.
However, the most significant unused features of Ada are given here:

" The Kernel makes no use of tasking.

* Records with discriminants are not used. This has no visible impact on the
application, but has caused some slightly strange coding styles in parts of the
Kernel.

" Objects of dynamic size are never declared within subprograms.

" Subprograms are not nested within other subprograms.
" Aflocated storage is never deallocated, either explicitly or implicitly. All uses of

the Ada allocator could be removed from the Kernel, if it seemed desirable for a
port to use a custom storage-management system.

" The separate clause is not used. This is to avoid the name management
problems that arise with library subunits.

I
I
I
I
I
I
I
1

274 CMUISEI-89-TR-1 9 I

I
I

3. Basic Data Types and Operations
This chapter gives the main hardware data types and operations required by DARK and
explains how they have been constructed in Ada. It indicates the compiler dependencies
involved in this process. These dependencies are encapsulated in the package
hardwareinterface, which is included in Appendix E.

I Target-dependent values, that must be computed afresh for each machine, are indicated

here by fl.I
3.1. Sizes of Data Types

I The sizes of the basic machine data types are defined as manifest constants:

bitsper._byte : constant : [];

I byte : constant := [;

word : constant : 3;

longword : constant := [];

3 On a typical 32-bit target, these values will be 8, 1, 2, and 4, respectively.

1 3.2. Untyped Storage
Access to the basic machine storage units is provided by two data types, one defining the
smallest addressable unit as an integer type, and the other defining it as a record composed
of individual bits. Representation clauses are used to enforce the correct mapping from the
Ada level to the hardware:

type hw_[unit] is range []..[];

for hw_[unit]'size use [];

type hw bits[N] is record
bit [K] : Boolean;
-- repeat for all N bits, in the appropriate order

end record;

for hw-bits[N] use record

end record;

On a typical byte-addressed machine, the hardware unit will be an unsigned 8-bit byte,
range 0..255. The corresponding record type will then be:

I CMU/SEI-89-TR-1 9 275

I
I

type hw bitsB is record
bitO : Boolean;
bitl : Boolean; I
bit2 : Boolean;
bit3 : Boolean;
bit4 : Boolean; I
bit5 : Boolean;
bit6 : Boolean;
bit7 : Boolean; U

end record;

The value conversion is also defined from the integer type to the record type, using an
instantiation of uncheckedconversion:

function to hw bits [N] is
new uncheckedconverslion (hw [unit] , hwbits [N]);

If a variable V has been declared as a hw_[unit], the individual bits of its current value can
be accessed by the function call: to hw bits [N] (V;).

It is also necessary to be able to convert variables from one type to the other; this is
achieved by the usual Ada device of defining two access types and a value conversion 1
between access values. This in effect allows a pointer to an object of one type to be
converted into a pointer to an object of the other type:

type hw_(unit]_ptr is access hw_[unit];
type hw bits[N]_ytr is access bwbits[N];

function to hw_[unit]_ptr is I
new unchecked conversion (system. address, hw_[unit]_pt);

function tohwbits [N]_ptr is
new unchecked conversion (system. address, hw bits [N]_ptr);

function to hw bits [N]_tr is 3
new unchecked conversion(hw_ [unit]_ptr,hw_bits[N]_ptr);

Hence, a given bit of the variable V could be modified by:

tohw_bits [N]Jptr(V' address) .bitK :- now valuefor-hibK;

3.3. Integer Types

The basic integer types are defined by giving explicit ranges. Representation clauses are
used to enforce the correct mapping from the Ada level to the hardware:

276 CMU/SEI-89-TR-19 1

I
!

type hwinteger is range [] .[;
for hwinteger' size use [] * bitsperbyte;

type hwshortinteger is range [] .. [],
for hw short.integer' size use w bitsperbyte;

type hwlong_integer is range [] ..

for hw..long_integer'size use] * bitsperbyte;

The Kernel assumes that a hw integer is at least 16 bits wide, and a hwIonginteger is at
i least 32 bits wide.

In addition, the important subsets of the basic integer types are defined explicitly. These

correspond to the Ada natural subset-the non-negative integers within the range-and the
positive subset-the strictly positive integers within the range:

type hw natural is range 0 .. hw_integer' last;
for hw natural'size use hwinteger'size;

type hwpositive is range 1 .. hw_integer'last;5 for hwypositive'size use hw__integer'size;

type hwlongnatural is range 0 .. hwlong_integer'last;
for hw long_natural'size use hw..long_integer' size;

type hwlongpositive is range 1 .. hwlong_integer'last;

for hw..long positive' size use hw..longinteger'size;

3.4. Duration

I The target representation of the Ada type duration is defined; this must capture exactly the
representation used by the compiler:

type hw_duration is
new duration range -86_400.0 .. +86_400.0;

for hw duration'small use [];
for hwt_duration' size use [1 * bitsyper_byte;

2
i

I
I CMUISEI-89-TR-1 9 277

I
U

3.5. Machine Addresses

The Kernel must be able to generate the addresses of subprograms and objects, store
them, pass them around, and subsequently use them. It is necessary, therefore, to define
an appropriate address type, together with conversions from the Ada type System.Address 3

type hw. address is [];

function to hv address is
new unchecked_ convexsion (hw.longinteger, hwaddess);

null.hw.address constant hw- address a
: to_hw..address(hwlong integer' ([]));

On a conventional von Neumann machine, the type System.Address will probably be an
integer type, and type hwaddress can simply be derived from it. The null value should if
possible be a value that will cause a hardware trap if an attempt is made to use it as an
address;typicalnull values are 0 and -1. I

3.6. Strings !
Finally, a suitable string type is defined:

type hw-string is [; i
This will almost always be a type derived from the standard Ada string type.

I
i
I,
!
I

I
278 CMU/SEI-89-TR-19 Bi

I
I
g 4. Encapsulation of Assembly Code

This chapter explains the principles behind the design of DARK hand-coded assembler
modules and their interface to the Ada code. It outlines the considerations that such a
design must address, and the compiler dependencies involved.

U 4.1. Linkage
First, the compiler must provide a means of invoking assembler subprograms from Ada.
This should be done by the standard Ada pragma Interface. However, it might also be
necessary to use appropriate naming conventions for the subprograms, since the machine

assembler and linker might not obey the Ada conventions concerning lexical identifiers.
Particular issues to be addressed are:

* Legal characters

a Maximum allowed length

* Case sensitivity
e Possible clashes with compiler-generated names

It is also necessary to be able to inform the Ada library or binder that certain bodies are in
assembler, so that it does not complain when they are not found in Ada. This is often done
automatically as a consequence of the pragma. Finally, the real bodies must be linked with
the Ada code to form the executable image; this may be done by a special command to the
Ada linker, or by importing the bodies into the current library.

The assembler code must contain the appropriate cross-reference directives to make any
defined symbols known to the Ada linker or debugger.

1 4.2. Program and Data Sections and Attribul-c--s

Any assembler code must be assigned to the correct code section or Psect, with the correct

attributes. This is usually done by assembler directives. These must be inserted in the
assembler code bodies in a manner prescribed by the machine assembler manual, and they5 must conform to the conventions used by the Ada compiler.

Conventions that the hand coder might be advised to respect include:

e Declare code sections to be execute-only

* Use position-independent codeg * Avoid jumping between different subprogram bodies

Similarly, any data objects defined at the assembler level must be allocated in the
appropriate data sections, with the correct attributes, just as if the Ada compiler had created

them rather than the hand coder. Any conventions for allocating read-only and read-write

I CMU/SEI-89-TR-19 279

I
p

data should be respected; for example, if the compiler stores string literals in a read-only
data area, so should the hand coder. 3
4.3. Data Representation 3
In the Kernel, some objects are accessed by both Ada code and machine code. It is
necessary for the machine code to understand the representations of these objects. 3
Objects passed from Ada code down to assembler code include simple integers, addresses,
values of type duration, and simple records.

Most data representation issues are captured by the declarations in Chapter 3; for any of the
types there introduced, the correct target representation is made explicit and guaranteed by
appropriate representation clauses. I
Any record types that must be used by the assembler level are defined in terms of the
simple hardware types, and their representation also is fixed by representation clauses. I

4.4. Access to Ada Objects from Assembly Code I
The Kernel has been structured so that no assembler subprogram requires direct access to
any Ada object. Where access to such objects is necessary, special subprograms have I
been introduced that allow the relevant addresses to be passed as parameters, or returnedas results, from one level to the other. g
For example, one assembler subprogram invokes the Kernel scheduler. This is done by
calling an initialization routine that passes as a parameter the address of the scheduler
subprogram; this address is saved in a static variable within the assembler module, and the I
call of the scheduler is performed indirectly through this variable. I
4.5. Access to Assembler Objects from Ada Code
The Kernel has been structured so that no Ada code requires direct access to any data 3
object created at the assembler level. a
4.6. Procedural Interface
Any assembler subprograms must obey all appropriate parts of the Ada protocol for the !

procedural interface. This includes:

" Entry protocol 3
" Exit and return protocol
* Register usage

280 CMU/SEI-89-TR-1 9

U
i

" Stack manipulation
* Parameter passing
" Exception propagation

f The parameter-passing protocol of course depends on the number, type, and mode of the
parameters, and so will be different for different subprograms. The Ada conventions for
parameters and results must be copied exactly by the assembler code, for all appropriate
types and modes.

IThe issues involved are:

e Mode of transmission-value or reference
* Manner of transmission
• Order of parameters
e How to access In parameters
a How to set out parameters
* How to return function results5* What extra "hidden" parameters need to be passed

The protocol for saving and restoring registers may depend on how many registers the
assembler code subprogram uses. Some assemblers can generate this protocol
mechanically, but most cannot, and the hand coder must then take care to save and restore
all registers that ought to be saved and restored.

£ The rest of the protocol will usually consist of standard sequences that will be the same, or

almost the same, for all subprograms.!
4.7. Exceptions

I The assembler subprograms must perform all necessary action to ensure that exceptions

are correctly raised and propagated. This includes:

3 e Raising exceptions where appropriate
* Ensuring that exceptions are propagated out of assembler bodies
e Ensuring that exceptions are propagated through assembler bodies
* Informing the Ada runtime that a subprogram contains no guarded regions
* Identifying any guarded regions

The current Kernel requires only the first four of these facilities, since no assembler code
* contains a guarded region.

I
I CMUISEI-89-TR-1 9 281

I

Appendix A: Data and Control Flow Diagrams
The notation used for data and control flow is a modified form of the notation expounded on
by Paul Ward and Stephen Mellor in their books on the design of real-time software [Ward
85]. The notation used is true to the intent of Ward and Mellor's notation. The only
variations are:

" use of rectangles with rounded comers for processes

" use of a square for external entities

Aside from these minor cosmetic changes, the data and control flow diagrams used follow
the conventions set forth by Ward & Mellor. Figures 44 thru 46 briefly explain the symbols
available using this notation. I

Data Event
Store Store

a b I
Figure 44: Store Notation 3

The data store icon, shown in Figure 44 (a), represents a place where data is held until
needed by a process.

The event store icon, shown in Figure 44 (b), represents a place where control signals are
held until needed by a process. 3

2
I
I
I

282 CMU/SEI-69-TR-1 9

I
i

i * -...... *',
Data bontrol External
Transformation 'rransformation EntityIt S

a b cI
Figure 45: Process Notation

The data transformation icon, shown in Figure 45 (a), represents a process that accepts
input data from a data flow(s), control signal(s) from an event flow(s), performs processing
on the input data, and transfers the data out over a data flow(s).

The control transformation icon, shown in Figure 45 (b), represents a process that accepts a
control signal(s) from an event flow(s), performs processing on the control signal and
transfers information out over an event flow(s).

The external entity icon, shown in Figure 45 (c), represents a physical device capable ofp generating and/or accepting data and control flows.

II
I
I
i

ICMUISEI-89-TR-1 928

I
5
I

Interrupt

Data Event .
Flow Flow -0

Nom

a b c I
Figure 46: Flow Notation 5

The data flow symbol, shown in Figure 46 (a), represents the transfer of data from one
process to another process or an external entity. This is a discrete transfer, i.e., the data is
available until read and then is no longer available via the flow.

The event flow symbol, shown in Figure 46 (b), represents the transfer of a control signal 5
from one process to another process or an external entity. This a discrete transfer, i.e., the
signal is available until read and then is no longer available via the flow.

The interrupt symbol, shown in Figure 46 (c), represents transfer of a control from from one
design entity to another. i

2
I
I

I

I

284CMU/SEI-89-TR-1 9 5

i
N

Appendix B: Kernel Interface Control Document
This appendix presents the format of the various Kernel messages described elsewhere in
this document. In particular, refer to Part IV, Communication Subsystem, Section 2.4 for the
exact definition of each message field.

Message Message
Operation Tag Sender Receiver Timeout Length ID Content

Kernel ACK ACKing originating NA 0 id of msg NA
message process process being ACKed

Kernel NAK NAKing originating NA 0 id of msg NA

message process process being NAKed

Kernel NAK dead originating NA 0 id of msg NA
message process process process being NAKed

dead
Kernel info dead originating NA 0 id of msg NA

message process process process being NAKed
dead

Kernel kill originating process NA 0 NA NA
message process process to kill

Kernel init Main Main NA 0 NA NA
t message complete Unit Unit

Kernel process Main Main NA length of NA process
message created Unit Unit process name

name

Kernel network any any NA 0 NA NA

message tailure process process

I Table 1: Kernel Message Formats

I

I
U CMU/SEI-89-TR-1 9 285

I

Message Messge

Operation Tag Sender Receiver Timeout Length ID Content
sync prepare to originating all other NA 1 NA 16#FF#
protocol sync processor processors

sync time is originating all other NA 8 NA current epoch
protocol now processor processors time

Table 2: Synchronization Message Formats

I

Message Message
Operation Tag Sender Receiver Tlmot Length ID Content

nit master Master subordinate NA 0 NA NA
protocol ready processor processor

nit NCT subordinate Master NA 4 NA number of
protocol count processor processor NCT entries
init NCT subordinate Master NA size of an NA an NCT I
protocol entry processor processor NCT record record

init go Master subordinate NA 8 NA Current Epoch
protocol enclosed processor processor time

mit go subordinate Master NA 0 NA NA
protocol acknowledge processor processor _

Table 3: Initialization Message Formats

I

Message Message I
Operation Tag Sender Receiver Timeout Length ID Content

blind defined by Main tool NA See tool NA See tool
send user Unit process interface interface * 1

package package,
attribute definitions

Table 4: Tool Interface Message Formats

I

286 CMUISEI-89-TR-1 9!

U
i

Appendix C: Race Conditions
In the Kernel, two types of asynchronous actions exist that can disturb the execution of a
process:

1. Interrupts: where an external device takes control of the CPU away from the
currently executing process.

2. Process suspension: where the Kernel takes control of the CPU away from a
process (according to the rules defined for the Scheduler). This activity is
either voluntary (via the invocat'on of a blocking primitive) or the result of an
interrupt changing the state of a higher priority process.

Given that asynchronous activities can occur, there area a number of critical data structures5that must be protected. These shared data structures are:

" Process Table (PTB)

• Context Save Area
- Schedule attributes
* Message queue

• Pending activities attributes

* Semaphore attributes
j1 - Tool interface attributes

" Interrupt Table (IT)

e Network Configuration Table (NCT)
" Timeslice Parameters (TSP)

This appendix examines each of these data structures and identifies the potential race
conditions and how each is resolved.

The assumptions upon which this analysis is based are:

1. The Kernel is reentrant, i.e., the Kernel, can suspend processes in the middle
of primitive invocation processing.

2. The following procedures are atomic:

* Time keeper.insertevent
e Time keeper.removeevent

* Scheduler.schedule

e Contextswitcher.switchprocesses

a Contextswitcher.resumeprocess
e Exception-raiser.raise exception
* Datagram_management.enqueue
@ Datagrammanagement.dequeue
I Datagrammanagement.delete

I CMU/SEI-89-TR-19 287

I

* Datagrammanagement.get head

C.1. Process Table - Context Save Area

Situation: Interrupt causing a context switch while the context switcher is executing.

Resolution: Make context switch atomic. I

C.2. Process Table - Schedule Attributes

Situation: Alarm and timeout expire for the same process at same instant

* 2 different priorities 5
* 2 different exceptions

Resolution: Alarm expiration has precedence.

Situation: Executing set process priority or set process preemption when alarm expires
(but before the call to Schedule that updates these values).I

Resolution: Propagation of the alarm exception terminates the primitive invocation with the
process having the priority specified by the set alarm call.

Situation: Executing setprocesspriority or setprocesspreemption when a schedule
operation occurs (but before the call to Schedule that updates these values). =

Resolution: The operation simply takes place when next the process gets scheduled. The
actual value updates still occur atomically. n

C.3. Process Table - Message Queue I
Situation: Executing receive_message when receive timeout expires f
Resolution: Cancel timeout before beginning the message processing. This means that
once a message becomes available and a receivemessage is started, it will finish without a
timeout interruption.

Situation: Updating PTB when an interrupt or process context switch occurs 5
Resolution: The only multi-component values that must be updated are the:

1. Scheduling attributes (priority, preemption, state)

" on write, the update is handled via the Scheduler which is an atomic
operation

" on read, these are simple values and can safely be read without locking

288 CMU/SEI-89-TR-19 1

!
a

2. Message Queue

5 on write, all modifications are handled via the atomic operations
enqueue, dequeue, get-head, and delete5 o no simple reads are ever performed

Situation: Executing in an interrupt handler (i/h) when higher priority interrupt occurs

i Resolution: Primitives and user code are reentrant

Situation: Executing receivemessage when a "kill" message arrives for the receiving
process

Resolution:

*Process is immediately yanked from the Scheduler (via Remove_.process) and
never completes the receive operation.
The message queue is flushed, starting with the message that was being
processed at the time "kill" arrived. This can be accomplished because
gethead returns the message at the head of the queue without actually
removing it from the queue. Removal from the queue is done when the buffer
space is deallocated from the message queue and returned to the free list.

ji Situation: Executing die or kill (self) when a "kill" message arrives for the process

Resolution: Same as above.

i Situation: Executing sendmessage or sendrmessage_andwait when "kill" message
arrives for the sending process

I Resolution:

e Process is immediately yanked from the Scheduler and never completes the
send operation

* A CURRENT SEND BUFFER pointer is maintained in the process table. When a
"kill" occurs, this buffer is also deallocated and returned to the free list.

9 The incoming message queue is also purged (as above).
* The ACK/NAK to a dead process is ignored.

ISituation: Executing sendmessage or sendmessageandwait when an alarm expires
for the sending process

Resolution: The send operation is terminated. The alarm processing section of the clock
interrupt handler Deallocates the CURRENT SEND BUFFER. No buffers are lost.

9
I CMU/SEI-89-TR-1 9 289

!
!

C.4. Process Table - Pending Activities Attributes

Situation: Executing setalarm when an alarm expires (race on the ALARM RESUMPTION
PRIORITY field)

Resolution: The alarm event is removed before modifications are made to the alarm-related

data structures. i

Situation: Executing cancelalarm when an alarm expires

Resolution: Propagation of the alarm exception terminates the primitive invocation with the 5
process having the priority specified by the setalarm call (i.e., the alarm expiry has
precedence).

Situation: Executing any primitive when an alarm expires

Resolution: Propagation of the alarm exception terminates the primitive invocation with the
process having the priority specified by the setalarm call.

NOTE: I

1. When an alarm expires no post conditions are guaranteed for any Kernel
operati6n executing at that instant.

2. When an alarm expires during a receive message, the message being I
processed is still in the queue and is picked up by the next receivemessage
invocation. 3

C.5. Process Table - Semaphores Attributes a
Situation: Executing claim when preempted by a higher priority process

Resolution: Manipulation of semaphore wait queue is atomic. I
Situation: Executing Release when preempted by a higher priority process f
Resolution: Manipulation of semaphore wait queue is atomic. i
C.6. Table - Tool Interface Attributes
Situation: Executing begin-collection when a tool interface message arrives !

Resolution: Simple value update (receiving process id). No locking needed.

Situation: Executing endcollection when a tool interface message arrives

Resolution: Simple value update (receiving process id). No locking needed. 3

290 CMU/SEI-89-TR-19 1

I
!

C.7. Interrupt Table
ISituation: Executing bindjinterrupthandler when an interrupt occurs (for the interrupt

being rebound)

Resolution: The interrupt being rebound must be explicitly disabled first.

SC.8. Network Configuration Table

Situation: Executing allocatedevicereceiver when a message arrves from that device.

Resolution: Simple value update (receiving process id). No locking needed.

Situation: Message arrives from a non-Kernel device while the device receiver is going thru
die or kill processing

Resolution: The process is marked as dead in the first step of this processing, thus the
message from the non-Kernel device is thrown away without ever being queued.

C.9. Timeslice Parameters
I Situation: Executing set timeslicequantum when a slice expires.

3 Resolution: The timeslice quantum is a simple value. No locking needed.

Situation: Executing set timeslice_quantum when an interrupt occurs whose interrupt5 handler executes settimeslice-quantum.

Resolution: These calls serialize (simple write), with the last one to execute dictating the3 new value.

Situation: Executing disabletimeslicing when a slice expires.

'I Resolution: Simple value update. No locking needed.

Situation: Executing disabletimeslicing when an interrupt occurs whose interrupt handler
executes disabletime-slicing.

3 Resolution: These calls serialize, with the last one to execute dictating the new value.

2

ICMU/SEI-89-TR-1 9 291

5
I

Appendix D: 68020 Assembler Interface
This appendix gives the assembler interface used in the MC68020 with the current compiler
and version. Full details of the compiler and version conventions are found in [TeleSoft 88],
Chapter 6.

D.1. Linkage I
Linkage is effected by the pragmas Interface and Linkname [TSUG 6.12.1]: 5

procedure Low Level Action;

pragma Interface (Assembly, Low LevelAction);
pragma Linkname (LowLevel Action, "PSN low level-action");

The linkname always begins with the package short name (PSN); these prefixes are unique
and do not clash with any compiler-generated names. The linkname continues with the I
name of the subprogram; the total length never exceeds the maximum significant length of a
linkname, so this convention also ensures there are no name clashes for non-overloaded

subprograms.

When two or more Ada specifications' with the same expanded name - overloaded
subprograms - are implemented in assembler, the exported Ada names are generated by U
renames declarations, and the true subprograms have names made unique by appending a
suffix.

Linknames are not case sensitive.

Special rules had to be followed for operators, since the compiler does not permit the I
pragma INTERFACE to be applied to operator designators. The function was given a
conventional name and then renamed as the operator: £

function plus (left,right : T) return T;
pragma Interface (Assembly, plus);

function "+" (left, right : T) return T renames plus;

Within the assembler body, the linkname is generated by a standard XDEF directive: j
X1DF PSN low level action

The assembler routines must be presented to the Ada library as implementations of 3
package or subprogram bodies. This is done by the limport function of the Ada system
[TSUG 5.1], which must be invoked for each assembler unit after it has been assembled and
before any program requiring it can be linked. A file may contain either Ada code orI
assembler code, but not both. DARK project naming conventions require that a file
containing assembler code be named exactly as it would be if it were in Ada, but with the
additional suffix machinecode. An Ada specification is implemented, therefore, by at most
one Ada body and one assembler code body.

292 CMU/SEI-89-TR-19 1

I

D.2. Program and Data Sections
No use was made of program or data sections; the target configuration makes no distinction
between code and data.

The code as written is position independent.

D.3. Data Representation
The data representations common to both Ada and assembler levels are as specified in

Appendix E.

* There were two difficulties with these definitions:

" The compiler does not allocate single bytes for single byte-sized objects. It
allocates at least a (2-byte) word. However, it can allocate bytes for byte-sized

!! record components, and this is all that the Kernel requires.
" The compiler numbers the bits in an object from left to right [TSUG 6.8]. This is

contrary to the target machine conventions, which are observed by all thehardware documentation. The solution was to name the individual bits in a bytein accordance with the hardware convention, so bitO is the least significant bit,

Iand enforce compiler compliance by a representation clause.

3 D.4. Access to Ada Objects from Assembly Code

Not required.I
D.5. Access to Assembler Objects from Ada Code

5 Not required.

£D.6. Procedural Interface
5 The procedural interface uses the following protocol [TSUG 6.10, 6.12]:

D.6.1. Entry and Exit Protocol

3 e Call is by a JSR instruction, and on entry to the subprogram, the hardware
stack pointer (A7) points to the return address. Above this are the parameters,
in left-to-right order, so the last parameter is closest to A7. The caller therefore
must push the parameters onto the stack before the call.

* Exit is by an RTS, similarly; the caller resets the stack to reclaim the parameter
space.

i CMU/SEI-89-TR-19 293

I

D.6.2. Register Usage

" The called routine must save and restore any registers it uses except DO and I
D1.

" It must return a simple (see D.6.4.1) function result in DO.
" If it is returning a function result by reference, it must return the address of the

result in DO.

D.6.3. Stack Manipulation

* The called routine must at all times maintain in A7 a valid hardware stack
pointer. I

" The called routine may claim local storage by lowering the stack pointer; it must
restore the old value before exit.

" The called routine might12 have to build an Ada stack frame. This is done by
issuing a LINK instruction at the beginning and a corresponding UNLK
instruction at the end.

D.6.4. Parameter Passing
The parameter passing conventions are as follows [TSUG 6.10.2]:

D.6.4.1. Mode of Transmission 3
" All parameters smaller than a (2-byte) word are widened to 2 bytes and passed

by value. With the current compiler, all such parameters must be of a scalar
type.

" Parameters of simple (scalar and access) types and 4 bytes wide or smaller are
passed by value. P

" Parameters larger than 4 bytes, and all parameters of structured types, are I
passed by simple reference. This reference is the machine address of the
lowest-numbered storage unit, and is a 4-byte value.

D.6.4.2. Manner and Order of Transmission

" Parameters are pushed on the hardware (A7) stack in direct order. That is, the
leftmost parameter is pushed on the stack first, and the rightmost last.

" A parameter passed by reference passes the address of the actual as an In
parameter. 5

D.6.4.3. Accessing Parameters and Returning Function Results
" Value In parameters pass the actual value. Value out parameters pass in 3

binary zero and expect the out value to overwrite it. Value In out parameters
pass in the actual value and expect the new value to overwrite it.

" Function results not larger than 4 bytes are returned in register DO. I
12Only needed iH an exception may have to propagate through the assembly language routine.

294 CMU/SEI-89-TR-19 ii

I
i

* Function results larger than 4 bytes are returned in a hidden out parameter
whose address is passed as the final parameter to the function, after the last
true parameter. In addition, this address must also be returned in DO.

o Although some Ada types require hidden parameters to be passed along with
their actual values, no such types are used by any assembler subprogram.

Note that, since parameters are pushed on the stack left-to-right, the offset from the stack
pointer of any given parameter (the first, say) depends on the number of parameters and
their types. It is essential, therefore, that the Ada and assembler sides of this interface
correspond exactly, otherwise serious execution-time errors result.

I D.6.5. Example
The following example is taken from one of the Kernel modules. It is an implementation of
the function plus:

function "+" (Left,Right : KernelTime) return Kernel-Time;

I where the type Kerneltime is defined as a record with two components, each a 4-byte
integer. The function is specified in the module generic kemel time, and so its assembler
name begins with the package short name GKT.

HIGH EQU 4
LOW EQU 0

XDEF GMT...dd [1
GET add:

LINK A6,#0 2]

MOVEM.L D2/AO,-(A7) [3]
MOVEA.L 24(A7),AO [4]
iOVZ.L LOW(AO),DO
MOVZ.L HIGH(AO),D1
OVZA.L 20(A7),AO (5]ADD. L LOW (A0), DO

MOV.L RIGB(AO),D2
ADDX.L D2,DI [6]
TRAPV (7]
MOVZA.L 16(A7),AO [8]
MOVZ.L DO,LOW(AO)
OVZ.L DI,HIGR(AO)

MOVZ.L AO,DO [9]
MOVEM.L (A7)+,D2/AO [10]

RTS A6 [11]

The relevant instructions are annotated thus:

[1]:The linkage directive makes the name of the function accessible.

[2]:An Ada stack frame is built by a LINK instruction.
[3]:Registers used are saved (except for DO and D1).
[4]:The first parameter is passed by address and is pushed first onto the stack. I

is therefore farthest away from A7.

I CMUISEI-89-TR-19 295

[5]:The second parameter is likewise passed by reference and pushed next.

[6]:The two Kerneltime values are added. This instruction may cause a numeric
overflow.

[7]:Accordingly, the TRAPV is necessary to detect any overflow and trap to the
Ada runtime, which will raise the exception numericerror. N

[8]:The address of the result is passed as a hidden final parameter.
[9]:As well as storing the result there, the routine must return the same address in

DO.
[1 0]:The saved registers are restored.
[11]:The Ada stack frame is unlinked. n

(I 2]:Finally, the function returns to the caller. 'I
D.7. Exceptions

D.7.1. Raising ExceptionseI
The assembler code never raises a user-defined exception. Where appropriate, it raises an
intrinsic exception by executing a hardware TRAP instruction, which traps to the Ada I
runtime.

D.7.2. Exception Propagation !
The Ada runtime propagates exceptions upwards through stack frames, using the saved
information in each stack frame to find each caller. I
For this to work, every assembler body that can raise an exception, and every body through
which an exception might propagate, must build a valid Ada stack frame, in the manner

described above. The assembler body given in the example is a case in point: the
exception numericerror might have to be propagated through it, and so it must build a valid
Ada stack frame. 3
In addition, the Ada runtime constructs a backtrace of the call stack for diagnostic purposes.
The current Ada runtime tries to generate a complete backtrace before searching for an
exception handler, but unfortunately the test for the root of the call graph - the Ada
outermost level - does not function correctly when the root is a Kernel process. The
backtrace has therefore been disabled by setting an Ada runtime tailoring parameter. 3
D.7.3. Guarded Regions
The model used by the compiler relies on static data structures - code maps - to identify

guarded regions. The assumption made by the Ada runtime is that if the code map is
missing then no guarded regions exist in that code. Accordingly, the assembler bodies

contain no special code or data concerned with either guarded regions or their absence.

I
296 CMUISEI-89-TR-19 I

I

Appendix E: 68020 Tailoring

This appendix contains the hardware tailoring for the MC68020 with the current compiler
i and version.

E.1. Sizes of Data Types

bits_per byte : constant :-8;

5 byte : constant : 1;

word : constant : 2;

longword : constant = 4;

S E.2. Untyped Storage

type hw byte is range 0..255;

type hwbitsS is record
bit7 : Boolean;
bit6 : Boolean;
bit5 : Boolean;
bit4 : Boolean;
bit3 : Boolean;
bit2 : Boolean;

bitl : Boolean;
bitO : Boolean;

end record;

for hwbitsS use record
bit7 at 0 range 0..0;
bit6 at 0 range 1..I;
bitS at 0 range 2 .2;
bit4 at 0 range 3. .3;
bit3 at 0 range 4 .4;
bit2 at 0 range 5 .5;
bitl at 0 range 6..6;
bitO at 0 range 7. .7;

end record;

function to hw bitsS is

new uncheckedconversion(hw_byte, hw bits8);

I type hwbyteptr is access hwbyte;
type hwbits8ptr is access hw bitsS;

I function to_hw bytoe_ptr

i CMU/SEI-89-TR-19 297

is new unchecked onversion(ysta.address, hwbyteptr);

function to hw bits8_tr I
is new uncheckedconversion(system.ddess,hwbits8ptr);

function tohw_bit s titr
is new unchecked conversion (hibyte ptr, hw bitssptr);

E.3. Integer Types

type hw integer is range -32_768 .. 32_767; 1
for hwinteger'size use 2 * bitser_byte;

type hw -shortinteger is range -128 .. 127;
for hwhort_integer'size use 1 * bitsperbyte;

type hw long integer is
range -2_147_483_648 .. 2147_483647;

for hw-long intege' size use 4 * bitsper_byte;

type hw natural is range 0 .. 32 767; 1
for hwI_natural'size use 2 * bits-ezbyte;

type hwpositive is range 1 .. 32 767; 3
for hwpositive'size use 2 * bitsyper byte;

type hw _longnatural is range 0 .. 2_147_483_647;
for hwlong natural'size use 4 * bitsper_byte;

type hwlong positive is range 1 .. 2147_483_647; 3
for hwlong~positive'size use 4 * bitsper byte;

E.4. Duration I
type hwduration is

new duration range -86_400.0 .. +86_400.0;
for hw duration'small use 2.0 ** (-14);
for hw duration' size use 4 * bitsyer byte; 5

E.5. Machine Addresses i

I
I

296 CMU/SEI-89-TR-19 n

I
1

type hw._address is new system-add.ess;

I function to hw address is
new unchecked conversion(hw-long_integer, hw_address);

5, null hw-address constant hw address
:- to_hwaddress (hi_longinteger' (0));I

u E.6. Strings

type hwstriLng is new string;

2
I
I

t
i
I

I
U
I
I

i CMU/SEI-89-TR-1 9 299

!
I

Appendix F: Procedure to Requirement Mapping
A few notes about the requirements mapping tables:

" Only procedures and functions that appear at the package specification level
occur in the table. No instantiations are included (only the generic source). I

" Top-level package specifications occur only when there are internal objects that
fulfill requirements. I

" Overloaded names appear multiple times.
* The ordering of procedures and entries follows the order of the entries in the

specification.

Package/Procedure to Requirements Mapping

Requirement r Package/Procedure U
5.1.1 kernelexceptions

exceptionraiser.raise-exception
exceptionraiser

5.1.2 all Kernel primitives

I

£
I
i
I
£
!

I
I

300 CMU/SEI-89-TR-1 9 3

Package/Procedure to Requirements Mapping_

Requirement Package/Procedure
5.1.3 time -keeper.remove -event

time keeper insert-evenit
timej- eeper. initialize
timer -controller.cancel-timer
timer -controller.set-timer
timer controller. initialize
scc...porta.set
sccporta.send
scc.~.porta.put.byte
sccjporta.initialize
sccporta.get-byte
scc~porta.get
sccpora.enable-tx-interruptsIc~ot~nal -__7_nerut
sccporta.ensable x-interrupts
sccporta.disable-tx-interrupts
scc..porta.disale ixcterutI sccporta.dallocate
parallel -io -controller. receivepacket
parallel io -controller. sendpacketIaalli oto e~akoldexi~nerp
parallel io-controller.acknowledgexmit ~interrupt
parallel -ic -controller.xmit -buffer -empty
parallel - o -controller. recv-buffer-ful
parallel -lo -controllerdisable-xmit-interrupt;
parallel -io -control'ler.di sable-recv-interrupt;
parallel -io -controller. enable-xmit-interrupt;
parallel-io_-ontrollernenable -recv -interrupt;
parallel_io -controller.initialize_xmit;
parallel_io-controller.initialize-recv;
nproc.main -unit
mz8305_definitions
mvme1 3A definitions3 memory addresses
low -level_interrupt management.initialize
low -level_interrupt management.bind-slow-interrupt
low level_interrupt management.bind fast-interrupt
low-level -hardware. reset -interruptpriority
low-level -hardware. set-interruptpriority
low -level-hardware.v
low level_hardware.p
low-level-hardware.is -nproc
low-level -hardware.is - proc
low level-hardware. mynetwork-address
low-level-hardware
generic -networkglobals
context-sw/itcherglobals
clock.adjust -epoch -time
clock. adjust-elapsedjtime
clock.get -time
clock. stop..clock
clock. start-clock
bus-io.initialize

ICMU/SEI189-TR-1 9 301

Package/Procedure to Requirements Mapping
Requirement Package/Procedure5
5.1.4 time -keepergobals

time -keeper. remove event
time -keeper. insert e vent
time -keeper. initialize
timer -controller. cancel-timer
timer -controller. set-timer
timer controller. initialiize
tc body machine-code
scheduler. initialize
sccporta.setI
scc...porta.send
sccporta.put -byte

scporta.initaiz
_c~ot~e 1 yt

sccporta.get~bt
scc..porta.gne-txitrus
sccporta.enabe -txinterrupts
sccporta.ensable -rx - nterruptsI
sccporta.disabietrx interrupts
scc..porta.disabieorxterut
scc~porta.dal locate
parallelio controller.receive..packet
paralielio -controller.send-packet

prle_ I oto e~cnwldexi~nerp
paralieljio -controller.acknowledge xmit interrupt
paralleljio -controller.acknowleerecvjnerruI
parallel iocontroler.dsexmit-er ept
paralleiaiocontroller.ecvabufercfullrrp
paralleljio -controller.disable xmt-interrupt;

parallelio controller.enable-recv interrupt;
paraileijio-controler.initialize_xmt;
parallelj- o -controller. initiaize-recv;
nproc.main unit
mz8305_dei~nitions
mvmel 33A definitions
memory addresses
low -leve storage-manager. allocate
low level interruptmanagement.initialize
ilw-leveljinterruptmanagement.bind slowjinterrupt
low_leveljinterrupt management.bind-fastjinterrupt

lo __ lee Idaerstitrutpirt
low -level-hardware.rset interruptpriority
lowm-level hardware.sev nerppirt
low -level-hardware.v
low -level-hardware.ipro
low -level-hardware.isnkproc

low level hardware. my network-address
low-level-hardware
low-level-clock

302 CMU/SE1489-TR-19£

Package/Procedure to Requirements Mapping

Requirement Package/Procedure

5.1.4 (continued) llpe -body. InitializeProcessState
Himn-body..machine -code
llh bodymachine code
l1is body machine code
kim-body machine -code
kernel .exceptions.to string
ipi-bodymachine-code
interprocessor -interrupts. generate knjinterrupt
interprocessor interrupts.enable-kn-interrupt
interprocessor-interrupts
intemalprocess-management. create..kernel-processes
intemaljProcess-management.createinternalprocess
intemaI~processmanagement.get-nullprocess-number
internal process -nanagement. get..jextprocess-number
hardware interface.to hw bitsBptr
hardware--interface.to-hw-bits8..t5 hardware interface.to hw byteptr
hardware interface.to_hw-bits8
hardware Interface
gktbodymachine -codegeeiI trg aae.dalct
generic -storage -manager.dallocate
generic-storage-manager.inalizae

genencqueue-manager.remove-next
generic..queue....manager.get next
geneicqueue -manager.enQ..of-queue
genehi~queue.manager. initialize backward-iterat
geneicqueue..manager. initializejiterator
geneicqueue..manager. empty
genericqueue..manager.get-element
generic~queue-manager.get_head
generic...queue..manager. remove
generic..queue...manager.dequeue
generic...queuemanager.enqueue
genericqueue..manager.enqueue
geneicqueue.manager. delete
genercip~queue manager.delete
generic.queue...manager. create
generic..process -table. size -of..process table
generic..process -table. locate..process
genenic~process-table. initializeprocess-tablegeeiIrcestbedsto _cssifrai

generic..process table.drestoprocess-information
genenic.process table.craepoe='frmto
genericprocessjtable."<c=

generic-networkglobals
generic communication..globals
datagram-management.freequeue-status5 aga_maaeet _o-niilz

datagram management.nprocinitialize

5 CMU/SEI-89-TR-1 9 303

Package/Procedure to Requirements Mapping

Requirement Package/Procedure
5.1.4 (continued) datagramn-management. new-queue

datagram - anagement. getjfirst
datagram -management.free dg
datagramn-management. enq ueue
datagram -management. dequeue
datagramn-management. delete
datagran~management.alloc dg
datagramglobals
dark text io.to-hex
dark text io
context -switcher..globals
context save area
clock, ad justepoch-time3
clock.adjust -elapsed-time
clock.get_time
clock. stopclock
clock.start clock
bus-io.initialize

5.1.53
5.1.6 network -configuration

generic-schedulejtypes
genericprocess-table
generic..process-managers
genencjinetwork configuration

5.1.7 tool interface..outpuat
time keeper.r-emove -event
timekeeper. insert event
time -keeper. initialize
timer controlier.cancel timer '
timer -controller.settimer
timer controller. initialize
generic..communicationglobals
clock.ajust -epoch time
clock.adjust...,elapsed-time
clock.get -time

clc.so_clI
clock. startclock

5.1.8 generic ime management
genericjimeilice management
generic semaphoremanagement
geneicscheduie tpes
generic~process managers

_ Ii~rcesafiut-edr
generic..process-attribute-readfers
geneicprocessor management
generic -networkglobals
generic-alarm managemnent

304 CMU/SEI-80-TR-1 91

Package/Procedure to Requirements Mapping
Requirement Package/Procedure
5.2.4 scheduler.schedule-ih

scheduler.schedule
scheduler.removeprocess
scheduier.insertprocess
scc~porta.set
scc...porta.sendI sccporta.put byte
scc..porta.initialize
scc..porta.get byte
sccporta.get
sccporta.enable tx-interrupts
sccporta.ensable -rx -interrupts
scQ..porta.disable tx interruptsI scc~porta.disable-rx-interrupts
scc~.porta.deallocate
sccporta.allocate
process index-tabie.getprocess-index
process -index-table. get~process-identifier
internal-process-management.getnullprocess-number
internal-process-management.get-nextprocess-numberI generic storage manager.deal locate
generic -storage -manager. allocate
genericqueue-manager.remove-next
genericqueue manager. get -next
generic queue -manager.enj of queue
generic queue manager.initialize_backward-iterat
generic queue manager.initiaiize-iteratorI generic queue manager. empty
generic queue manager.get element
generic queue manager.get headI generic queue manager. remove
generic queue manager.dequeue
genericqueue -manager.enqueue
generic queue manager.enqueueI generic queue manager. delete
generic queue manager. delete

5 CMU/SEI-89-TR-1 9 305

Package/Procedure to Requirements Mapping

Requirement Package/Procedure5
6.1.1 generic..processor management.initiaiize master..processor

6.1.2 generic~processor management.initialize subordinateprocessor1

6.1.3 genenc..processor management.initialize-subordinate..processor
genenc..processor management.initiaiize master-processor

6.1.4 generic...processor management.initialize-subordinatejprocessor5
generi..processor -management. initialize masterprocessor
bus-io.multi-send

6.1.5 generic..processor management.initialize-master.processorI
6.1.6 generic -time -management

geneicprocessor management
generic-network...configuration

6.1.7 geneicprocessor management

6.1.8 genericyprocessor management5
6.1.9 generic..process managers

genericprocess-atribute-modifiers
generic-communication-management
bus-io.multi-send

6.1-.10 network -configuration

generic network-configuration

306 CU/SE1WTRI

Package/Procedure to Requirements Mapping5Requirement Package/Procedure
6.1.11 process-index -table.clear~process -index

processindex-table.set~process_index
process-index -table.getprocess -index
process index -table.getprocess-identffier
parallelo1 -controller.receive..packet
parallel-io controller. sendpacket
parallel io-controller.acknowledgexmitjinterrupt
parallel - o -controller.acknowledgejrecvjinterrupt
parallelicto-controller.xmit -buffler -empty
paralleli- o -controler.recv -buffer full
paralleijlo -controller.disable-xmit-interrupt;
parallell- o -controller. disable -recv-interrupt;
parallel-to controller.enable-xmit-interrupt;
parallel io-controller. enable -recv -interrupt;
parallelio-controIler, initial ize-xmit;
parallel -o -controller. initialize-recv;
nproc.main -unit
network -configuration. get..processor-id
network conf iguration
mz830Cdefinitions
mvmel 33A definitions
memory_addresses
low -level-hardware.reset-interruptpriority

low level hardware.v

_o -level hardware-p
_owlevel hardware. is-nproc

low-level-hardware.is-kproc
low-level hardware.my -network-address
low level hardware
ipi body_machine-code
ilh body_machine-code
interprocessor interrupts.generate-kn-interrupt
interprocessor interrupts.enable-kn-interrupt
interprocessor-interrupts
intemalprocessmanagement.create kemelprocesses
intemalprocessjnanagement.create-intemalprocess£ geneicprocessor-management
genericnetwork-globals
generic -network configuration. getprocessor-id
generic-network configuration
generic -communication-Management
datagramn-management.free queue-status
datagrarnjmanagement. nproc-initialize
datagram-management.kproc-intialize
datagrarn...management. new queue
datagram...ranagement.get-first
datagram-management.free dg
datagram -management. enqueue
datagramn-management. dequeue
datagram management. delete
datagram..management.aloc dg

_____________ datagramglobals

3CMU/SEI-SB-TR-1 9 307

Package/Procedure to Requirements Mapping
Requirement Package/Procedure3
6.2.1 time -keeper. initialize

ti mer-control ler. initialize
scc..porta. initialize
process-index-tabie.clear.process-index
process-index-table.set..processjindex
network configuration. get..processor-id
network-configuration
intemalprocess _management.create -- kemeljprocesses
intemal...process management.create-internal~process
generic storage..manager. initializeI
generic queue manager. create
generic..process -managers. createprocess
genericjprocess-managers.declareJprocess
genericprocess-managers.declare.process
genericprocessor management.initialization -complete
genericprocessor Management.initiaiize subordinate..processor
genericprocessor management.initialize master-Processor
generic networkco;nfiguration.get..processorjid
generic-network..configuration
clock.start clock
bus-io.initialize

6.2.2 generic-processor management.initializejnasterprocesso

306 CU/SE-89-R-1I

Package/Procedure to Requirements Mapping
Requirement rPackage/Procedure
7.1.1 generic~processmanagers

generic~process.attibute-modifiers

7.1.2 geneicprocess..managers
generic~process-attbute-modifiers

7.1.3 generic~process-managers-declareprocess
genericprocess-managers.dectareprocess

7.1.4 process encapsulation.dummycalljframe
low_levelprocess-encapsulation.indirect-cal
low -levelprocess -encapsulation. initial izeprocess-state
low -level-context-switcher.hwswitch-processes
low -level -context-switcher. hw -restoreprocess
low-level-context-switcher. hw-save-context
genericprocessjtable
generic~processmanagers-createprocess
context switcher.switchprocesses
context-switcher.restore..process
context-switcher.save-context

7.1.5 low-level~process encapsulationindirect-calI generic~rocess-managers.createprocess
7.1.6 generic...processjtable

genencprocess-managers.createprocess

7.1.7 generic,.processjtable
generic~process-managers.createprocessI7.1 .8 genericprocess-managers .createprocess
genericjprocess..managers

7.1.9 generic~processjtableI ____________ges~reae~roes

7.1.10 generic~process-managers.createprocess

* 7.1 .11 requirement deleted

7.1 .12 process-encapsulation
geneicprocess-managers.createprocess

7.1 .13 generic~process -managers
geneicprocess-atbute modifiers

7.1 .14 network-configuration
generic-network-conf igu ration
generic communication management.allocate device receiver37.1.15 genericprocessor-Management.inialization~complete

7.1 .16 network-configuration
genericprocessornanagement.initialization completeI ____________________generic-network_configuration

7.1.17genericprocessornanagement.initialization complete

CMU/SEI-89-TR.1 9 309

Package/Procedure to Requirements Mapping

Requirement Package/Procedure3
7.1.18 generic..processattribute -modifiers.kill

generic...process attribute modifiers. die

7.1 .19 requirement deleted
7.1.20 genericjprocess attribute modif iers. kill

7.1.21 generic..process-tableI
generic.process-attribute-modifiers. die
generic communication-management.send_message.and-wat
generic communicationmanagement.send-messageand-wait

_ ei-omuiainmnaeetsn_mesg Idwi
generic communication-management.send message.adwi
bus-io.send-kernel-datagramn
bus io.sendprocess-datagram

7.1.22 requirement deleted
7.1.23 genericjprocess attribute-readers.who-am-i3

7.1.24 generic..process-attribute-readers.name-of
7.1.25 genericprocess -managers.createjprocess

genenc..process-attribute-readers.name-of
generic..process-attribute-modifiers. kill
generic..process -attribute -modifiers.die
genericprocessor management.initialization-complete

_ _ -omuiainmaaeetsedmsae_an Ii
generic communicationjiianagement.send message.and-wait
generic communicationmanagement.send-messageand-wait

bus-io.send-kernel-datagram
bus-io.send.~process-datagram

7.1.26 generic..process managers.create~process
generic..process,.attnibute-readers.narne-of
generic.process-attribute-modifiers. kill
genenc..process-attribute-modif iers. die
genericprocessor management. iniialization...complete
generic communication..management.send-message.and-wait
generic communicationmanagement.send-messageand-wait
generic communication...management.send messageand-wait
bus-io.send-kernel-datagram
busjiO.sendprocess.datagram

7.1.27 generic..process-table
_____________ _ Sscreteproes
7.2.1generic..process managers.create~process

7.2.2 genericprocess-attribute-modifiers. killI
generic~jrocess-attribute modifiers. die

7.2.3 requirement deleted

7.2.4 generic-communication..management.allocate-device-receiver
7.2.5 genericjprocessjnanagers.create.process

310 CMU/SEII-89-TR-1 9

I
I

Package/Procedure to Requirements Mapping5 Requirement Package/Procedure

7.2.6 generic....processmanagers.create....process

I
I
U
I
S
I
U
I
I
I
I
I
5
I
I
5 CMU(SEI-89-TR-1 9 311

Package/Procedure to Requirements Mapping

Requirement Package/Procedure3
8.1 .1 generic -semaphore..management

generic..process table

8.1.2 generic-semaphore -management
genericprocess-table

8.1.3 generic-semaphore...management.claim3
generic semaphoremanagemb-nt.claim
generic-semaphore -management. claim
generic..process table

8.1. geei-eahrI aaeet li
8.1.4generic semaphoremanagement. claim

generic semaphore.management.claim

generic..process table
8.1.5 timejeeper.remove..event

time-.keeper. insert -event
timer -controller.cancel-timer
timer-controller.set-timer
generic semaphore -management.claim
generic~process -table

8.1.6 timej- eeper.remove -event
time - eeper.insert -event
timer controller. cancel-timer
timer-controller.set-timer
generic semaphore..management.cfaim
generic..process table1

8.1.7 generic semaphore..management.claim
generic-semaphorejnanagement. claim
generic semaphoremanagement.claim3

8.1.8 generic -semaphore -management.claim
generic semaphore..management.claim
generic semaphore..management.ciaim3

8.1.9 generic semaphore-management.claim
generic semaphore..management.claim
generic semaphore..management.claim
generic~.process-table

8.1.10 generic semaphore..management.release
generic..process-table5

8.1 .11 generic-semaphore -management. release
genenic.process-table

8.1.12 time-kceeperI
generic..process-attribute-modifiers.kiI
generic-.process-attribute modifiers.die

18.1.1 geeU-eahr-Mngmn~ee
8.1 .13 generic semaphore-management~r es

312 CMUISEI-89-TR-1 91

Package/Procedure to Requirements Mapping3Requirement Package/Procedure
8.1 .15 generic...semaphore-management.release
8.1.16 generic...semaphore man agement.ciaimI ge nencsemaphoremanagement.claim

geflenQ.semaphoremanagement.claim
genericprocessjtableI8.2.1 generic-semaphore-management
generic..process table

8.2.2 generic-semaphore management. claim
generiQ..semaphore-management.claim
generic-semaphore-Management.clai~m

38 82.3 generic-semaphoremanagement. release

CMUE-9-R1 1

Package/Procedure to Requirements Mapping

Requirement JPackage/Procedure
9.1.1 generiQ..process -managers.createprocess

9.1.2 generic-schedule types
generic..process managers.createprocess

9.1.3 generic-times lice-management
generic-schedule tpes

9.1.4 generic-timeslice-management
generic schedule~types

9.1.5 scheduler.insert-process
generic timeslice-management
generic-schedu letypes

9.1.6 scheduler. schedule
generic semaphorejnanagement. claim
generic semaphoremanagement. claim
generic -semaphoremanagement. claim
generic..process-attribute-modifiers.wait
generic.process...attribute-modifiers. wait
generic..process attribute-modifiers.set~.process.priority

_ Ii-omuiainr~aaeetrcev~esg
generic communicationrnanagement.receive message
generic communication-management.receive message

generic -communication...management.send message-and-wait
generic-communication management.send message.and-wait
generic communication-management.send-message.and-wait
generic-alarm..management.set-alarm3

9.1.7 generic..process-table
geneicprocess managers.create~process

9.1.8 scheduler.schedule5
generic semaphore-management. claim
generic semaphoremanagement. claim
generiCsemaphorejnanagement. claim
generic..process-table
generic~process-attibute-modifiers.wait
geneicprocess-attibute-modifiers.wait
geneicprocess-attibute-modifiers. set..processpniontyI
generic.communicationmanagement.receive - essage
generic -communicationmanagement.receive-message
geneic-communication-management.receive-message

geen-omunctin-aagmetsedesae_an Ui
generic communication-management.send-message.and-wait
generic-communicationmanagement.send message..and-wait

generic alarm-management.set-alarm
9.1.9 generic..process_table

generic..process attribute-readers.get..processjriority

9.1 .10 generic-times lice -management
generic-schedule-types

314 CMU/SEI-89-TR-1 9

Package/Procedure to Requirements Mapping3Requirement TPackage/Procedure
9.1 .11 genericprocess-table

generic..process managers.create~processI9.1.12 scheduler.schedule
geneicprocess -able
generic~process-atnbute -modifiers.setprocess.preernption

9.1 .13 generic~processjtable
generic~process-attibute readers-get..processpreemption

9.1 .14 geneicprocessatri bute-modif iers. wait
genericprocess.atnbute modif iers. wait

9.1.15 time_keeper. remove -event
time keeper.insert event
timer controller.cancel-timer
timer-controller.set-timer
generic processjtable
generic~process.atribute-modifiers.wait

9.1 .16 time -keeper.remove -event
time -keeper.insert -event
timer -controller. cancel-timer
timer- controller.set-timer
genericprocess -able3 generic~process..attribute-modifiers.wait

9.1.17 time -keeper.remove -event
time -keeper.insert -event
timer-controller.cancef-timer
timer-controller.set-timer
generic~process -attribute -modifiers.wait
genericprocess..atbute-modifiers.waitI9.1 .18 times iceparameters
generic-times lice-management. set timesl ice

9.1 .19 time-keeper.remove-event
time -keeper.insert-event
timesliceparameters
timer -controiler.cancel-timer
timer controller.set timer
generic-timeslice_management.enable time-slicing
genencprocessjtable

9.1.20 time-keeper.remove-event
time-keeper.insert-event
timeslice~.parameters
timer control ler.cancel-timer
timer-controller.set-timer
generic-timeslice-management.disable-time-sici ng

9.1.21 genericprocessjtable
9.1 .21times iceparameters
______ ______generic times lice management

3CMUISEI-89-TR-1 9 315

Package/Procedure to Requirements Mapping

Requirement Package/ProcedureI
9.1.22 genericprocess -attribute-modifiers.wat

generic~process-atbute-modfiers.wat
genericprocess attribute-modif iers.set~processpriority
geneicprocess-atribute-modifiers .set-processpreemption
generic communication..management.receivemessage

_ Ii-omuiainmnaeetrcev-esg
generic-communication..management. receive -message
generic communicatioQ..management.receid.messaeadwi
generic-communication..management.send message..and-wait
generic -communication-management.send-message and-wait
generic alarm-management.cancel-alarm
generic alarm management.set alarm

9..2 Iceue~ceuei
9.1.23 scheduler.schedule~i

scheduler. removeprocess
scheduler. insert-process
generic-schedule.types
genericprocess table

9.1.24 scheduler.schedule ihI
scheduler. schedule
generic timeslice management

9.1.25 scheduler.schedule-ih3
scheduler. schedule

9.1.26 scheduler
generic_timeslice-management

9.1.27 scheduler.schedule
9.1.28 scheduler3
9.1.29 generic..process-table

generic.process-attribute-modifiers.wait
generic..process-attribute-modifiers. wadt

9.2.1 generic..process-afttrbute-modifiers.set..processprority

9.2.2 genericprocess_attribute-modffiers .set~processpreemption
9.2.3 generic..~process-attribute-modifiers.wait

geneicprocess -attribute -modifiers.wait
context-switcher.save-context

_.. sceueIceuei
9.2.4 scheduler. schedule~i

generic -timesice -management
context-switcher.restore..process

9.2.5 generic_times lice -management.disabletime.slicing
generic-timeslice management.enable time-slicing

316 CMU/SEI-89-TR-1 91

Package/Procedure to Requirements Mapping3Requirement Package/Procedure
9.2.6 scheduler.schedule-ih

sched uler. schedule
generic - imes lice -management
context-Switcher.swtch~processes

9.2.7 scheduler.schedule ihIsched uler.schedule
genencj~imes lice-management

IM/E-9T- 1

Package/Procedure to Requirements Mapping
Requirement Package/Procedure
10.1.1 intemaLprocess-managementgetjiulfjprocess-number

ineal _ocs maaeetIe-etpoesnme
genenic..process managers.declare.~process

generic..process-attribute-readers.name-of

10.1.2 geneicprocess-table
generic-communication management.send message _and-wait
generic communication-management.send message.and-wait
generic communication...management.send message..and-wat
generic communication..management.send message

10.1.3 genericprocess-table
generic communication...management.send message-and-wait

geerc-omuictonmaagmntsedmesae_ Ii
generic communication-management.send message..and-wait

10.1.4generic communication-management.send message and wait
10.1.4generic-communication management.send message..and wait

_ _ _ Uunctonmngeetsedmssg-ndwi
10.1.5generic communication-management.send message~and-wait

generic-communication..management.send message.and-wait
_ _ Iomuiain-aaeet~edmsag-n-a

10.1.5 generic communication-management.send-messageadwi

10.1.6 process -index-table.clearprocess-index
process-index-table.setprocess-index
process -indexjtable.get..process -index
process index-table.get..process-identifier
network -configuration.get..processor-id
netwo rk -configuration

gnnprcs_maaesdcIr~rcs
generic.process managers.deciare~process
generic-network.globals
generic network-configuration.get.processor-id
generic-network-configuration
generic communication...management.send -message -and -wait
generic communication-management-send message..and-wait

_ _ Immncto-mngmn~sn-esgeadwi
generic communication..management.send message.adwt
bus-io.send-kernel-datagram
bus-io.send~process-datagram5

10.1.7 time -keeper.remove event
time -keeper.insert -event
timer -control lercancel-timer
timer",controller.set-timer
generic.process-table
generic communication..management.send-message.and~wait

318 CMU/SEI-89-TR-19£

Package/Procedure to Requirements Mapping3 Requirement JPackage/Procedure
10.1.8 time -keeper.remove -event

time -keeper.insert -event
timer -controller.cancel-timer
timer -controlier.set-timer
genericprocessjtable3 _________________generic communication-management.send message and -wadt

10.1.9 generic communication-management send message.and-.wait
generic communication-management.send message and wait

1011 _ _ _omuiaio-aaemn~ed-esg-adwf

1110generic communication_management.send -messageand -waft
generic_communication-management.send message and wait

10..11generic communication-management.send message..and...wait
geei _ _ _nctonmngmntsn-esaeadwi

10.1.11 generic-communication-man agement.send message..and..waft

generic communication-management.sendie messaged.ai
generic communication-management.send vemessagenwf

10.1.12 genericprocess ctble agmn~rcie-esg
generic communication-management. receive -message
generic communication_management.receive-message

1011 _eei-omnctonmngmn~eev _ esg
generic communication-management.receive message

10.1.13generic communication-management.receive message
1011gpoeneri communicaocaeme-ndecev esg£ gercs con iatocaaeme-ntdecev esg

10.1.15 process index table.clear.process index
process index table.setprocess indextfe

network configuration.get..processorid
network-configurationgeeIpoesmngr~elr~rcs
genericprocess-managers.deciareprocess
generic-network-globalsIgeneric -network configuration~gtpoesri
generic -network-configurationgeposori
generic communication-management.receive message
generic communication-management.receive message
generic communication-management-receive-message

10.1-16 time keeper.remove event
time~keeper.insert -event
timer -controller.cancei-timer
timer -controiier.set-timer
generic..process table
generic communication-management.receive message

I CMU/SEI-89-TR-1 9 319

Package/Procedure to Requirements Mapping

Requirement Package/Procedure1
10.1.17 time eeper.remove..event

time-keeper. insert -event
timer -controller.cancel-timer
timer-controllerset-timer
genencprocess-table
generic communication...management.receive--message3

10.1.18~~ geei comnctomngmn1eevjesg
10..18generic communication...management.receive-message

_ Ii-omuiainmnaeetrcev-esg
10.1.19 generic communication..management
10.1.20 generic communication...management. receive....message

generic-communication...management.receive -message
_ Ii-omuiainmnaeetrcev-esg

10.1.21generic communicationjnanagement.receive-message
10..21generic communicationmanagement.receive-message

datagram~management.new queue
datagram -management.get-first
datagramjnanagement.dequeue
datagram...management.delete

10.1.22 generic..process-table
geneicprocess managers..globals
geneicprocess managers.createprocess
generic communication..management

10.1.23 genericprocess managers.createprocess
generic communication..management

10.1.24 generic communication...management.receivemessage
generic communicationjnanagement.receive -message
generic communication..management.receive-message

10.1.25 generic communication-management.send -message -and -wait
generic-communication..management.send -message..and -wait

_ _ _ Incainmaaeet~edMesg-adwi
generic_communicationjnanagement.send message.adwi

10.1.26 networ _configuration
geneicprocess-managers.declare..process
generic-network-configuration
generic communicationjrianagement.receivejnessage
generic communication..management.receive -message
generic-communication...management. receive message
generic communicationjnanagement.send message

10.1.27 generic communication..management.send message..and-wat
_ _ Iomuiaio-aaemn~ed-esg~adwi

generic communication-management.send messageand~wait
1..8generic-communication...management~sn esg..adwi

10.1.28 generic communication..mariagement

bus-io.send-kernel-datagram

bus_io.sendjprocess-datagram

320 CMU/SEI-89-TR-1 91

Package/Procedure to Requirements Mapping3Requirement Package/Procedure
10.1.30 generic communication-management510.1.31 generic communication-management
10.1.32 generic_communication-management.send -message -and -wait

generic- communication_management.send message.and..wait
generic communication_management.send message..and...ait
bus-io.sendprocess.datagram

10.1.33 generic-communication-management5 __ ____ ____bus io

10.1.34 generic -communication-management
bus-io310.1.35 generic-communication_management.receive message
genenc communication-management.receive message
generic-communication-management.receive message310.1.36 generic communication-management.receive message
generic communication-management.receive message
generic-communication-management.receive message3 _____________________ bus-io

10.1.37 generic..processjtable
10.1.38 generic..process-4abie

10.1 .39 genericprocessjtable
10.2.1 generic -communication_management.send message

bus io.send kemnel datagram
bus-io. send-process..datag ram

10.2.2 generic -communication-management.send message
bus -io.send -kemnel datagram
bus-io. sendprocess..datagram

10.2.3 generic communication-management.send -message...and -waftI _ _mmncto-mngmn~sn-esgeadwf

generic -communication-management.send message and wait
bus -io.send -kemnel datagram5 ~bus io.send..process...datagram

10.2.4 generic communication-management.send message..and.wait
generic -communication_management.sendmessageand-wah
generic communication -management.send message.and.wait
busj- o.send-kemel-datagram
busio.send..process..datagram

10.2.5 generic communication-management.send message
bus-io.send -kemei-datagram
busjlo.sendprocess.datagram

10.2.6 generic communication management.send message
bus-io.send-kemel-datagram
bus_io. send..process..datag ram

3CMU/SEI-89-TR-1 9 321

Package/Procedure to Requirements Mapping

Requirement Package/Procedure
10.2.7 generic comrnunication...management.send message _.and-wait

generic -communication-management.send message..and-wait
generic communication...management.send-messageand-wait
bus-iosend-kernel-datagram
bus io.sendprocess..datagram

10.2.8_ Ieei-omncainmngmn~edmsaeadwi
10.2.8 generic communication-management.send message..and_wait

generic communication..management.send-message..and-wait
bus-io.send-kernel-datagramI
bus jo. sendprocess-datagram

10.2.9 generic communication...management.receive..mressage
geei Iomncto-aaemn~eev~esg

generic communication..management.receive-message
bus-io.send-kernel-datagram
bus-io.sendprocess.datagramI

10.2.10 generic communication...management. receive....message
generic -communication..management.receive...ressage
generic communication..management.receive..message
bus-io.send-kernel-datagram
busjio.sendprocess.datagram

10.2.11 generic communication...management.send_messageand -wal
geec-omniaio-aagmntsn-msa_-n _ wai

generic-communication-management.send message-and-wait
generic communicationrnanagement.send_message.adwi

genri comncto..mngmnCed mse 39TR1

Package/Procedure to Requirements Mapping3Requirement Package/Procedure
11.1.1 interrupt~names

_____________________generic-interruptglobals

11.1.2 kernel -interrupt..management.bind-interrupthandler
kernel encapsulation.in interrupt
generic interrwptmanagement.bind-interrupthand lerI __ ____ ____genericjinterrupt..management.simulatejinterrupt

11.1.3 generic -interrupt management.simulate-interrupt
11.1.4 kernel interrupt management. enableI gener ic Jnterrupt management.enable

generic interruptglobals
11.1.5 kernel interruptManagement. disable

generic interrupt management. disable
generic - nterruptglobals

11.1.6 interprocessor interruptsI generic interruptglobals
11.1.7 kernel -interrupt-management. enabled

generic interrupt management.enabled
11.1.8 kernel-interruptmanagement.simulate interrupt

generic Jnterrupt management. simulatejinterrupt'
11.1.9 kernel interruptmanagement. bind interrupthandler

generic interrupt management.bind-interrupt~handler

11.1.10 kernel-interrupt-management.bind-interrupthandler
generic interrupt management.bind-interrupt handler

11.1.11 low -level -interrupt management. bind -slow-interrupt
low level interrupt management.bind fast-interruptI _ _n-rut~aaeen~id-nerp~ade

kernelicenterruptmanagement. bind_interrupthander
1..2genericjnteup dbt..aae-mnod iner rpt...ade
11..12genericprocess attri bute-modifiers. waft

genericj-rocessiatonu_modifietreaivets
generic communication-management.receive message
generic-communication_management.receive message
generic-communication-management.receivemessage~n-wf
generlc-communication management.send -message -and -waft
generic-communication-management.send message and wait

11.1.13 kernel interruptjnanagement.bind interrupthandler
generic Jnterruptjnanagement.bind interrupthandler3 11~.1 .14 genericjnterrupt..globais

11.1.15 kernel interrupt manage ment
genericjinterruptmanagement

3CMU/SEI-89-TR-1 9 323

Package/Procedure to Requirements Mapping

Requirement Package/Procedure
11 .1 .16 time..keeper.initialize

low-level1-interruptmanagement. initialize
interrupt names
bus-io. initialize

11.1.17 generic-interruptglobals3
11.1.18 kernel-exceptions

11.1.19 generic_interruptglobals

11.1.20 kernel-interruptmarlagement
generic-interrupt management

11.1.21 interrupt-names
_____________________ generic interrupt..globals

11 .2.1 Ilim body machine -code
kim-body..machine-code

11.2.2 Him -bodymachine-code
kimn bodymachine-code

1123kre_inerp aaeetbn-nerp_hanI
11 .. 3 ernelicinterruptmanagement.bindnterrupt_handler

11.2.4 llim -bodymachine-code

kimrbodymachine-code

324 MU/SI-89TR-I

Package/Procedure to Requirements Mapping3Requirement Package/Procedure
12.1.1 genericjime..globals

generic-kernel-time

12.1.2 generic jime management
clock. adjust..epoch-time
clock. adjust..elapsed-time
clock.getjime
clock. stop-clock
clock. start-clock5 12.1 .3 timer-controller.get..current-count
timer-controller.acknowledgejtimer interrup
timer-controller.disable-timer
timer-controller.enable-timer
timer-controller.initialize-timer
low level clock
genericjime..managementU clock.getjime

12.1.4 clock. adjust-epoch -ime
clock.adjust..elapsed-timeIclock.get -ime
clock. stop__clock
clock. start-clock

12 1. _ _ _ _ _ _ _ _ _ _ _ _ _ _i

12.1.6 geneic-kemel time

312.1.7 genericjtimejnanagement
clock.adjust epoch -time
clock.adjust - eapsed-time
clock.get .time
clock. stop_clock
clock.start-clock

3 12.1.8 generic...timemanagement
12.1.9 genericjtimejnanagement

genericjime..globais.create_epoch-time5 ____________________generic...timeglobals.create-elapse-d time

12.1.10 time...keeper.adjust-elapsed..time
genericjime...management.adjust-elapsed time5 ___________________clock.adjust-elapsed time

12.1.11 time - eeper.adjustelapsedjtme
genencjimejnanagementU _____________________genenc..process-table

12.1.12 timejeeper.reset..epoch-time
genericjime..management.adjus-epochjime

3 CMU/SEI-89-TR-1 9 325

U
I

Package/Procedure to Requirements Mapping

Requirement Package/Procedure 5
12.1.13 timekeeper.reset epoch time

generic_ timemanagementgeneric_process-table!

12.1.14 generic time_management

12.1.15 timercontroller.get currentcount
low_levelclock I
generic timemanagement.readclock

12.1.16 generic timemanagement. synchronize
generictime management.synchronize
generic time_management. synchronize

12.1.17 time_keeper.removeevent 5
timekeeper.removeevent
time keeper. insertevent
timekeeper.insertevent
timer_ controller.canceltimer
timercontroller. cancel-timer
timercontroller.settimer
timer controller.settimer
generictimemanagement.synchronize
generic timemanagement.synchronize
generic time-management.synchronize

12.1.18 generic timemanagement.synchronize
generic time_management.synchronize
generic_processtablem c

12.1.19 genericprocesstable

12.1.20 genericrtimetmanagement, synchronize
generic time_management.synchronize
generictimemanagement. synchronize

12.1.21 generic timemanagement.synchronize
generic time management.synchronize
generic timemanagement.synchronize

12.1.22 generic time management. synchronize
generictimemanagement. synchronize

326 CMU/SEI-89-TR-1 9

Package/Procedure to Requirtiments Mapping5Requirement Package/Procedure
12.1.23 gktbodymachine-code

genericjtimeglobais.to-epoch time
generic imeglobals.to..elapsed time

gee cie..globals.to-kernel-timegenericjime..globals.to -kernel -time
genericjime.globals.toAda-duration
genericjime...lobals.to-elapsed-time
genenicjime..globals.*>=*
genericjime-globals.">*£ genericjtime-globals."<="
genericjime.g loals."<
genericjime-.globats.">=*
genericjtimeglobals. a>"

genericjime.g loals.*<="
generic-timeglobals."<'
genericjime.g loals.*Igenericjtimeglobals."*
genericjtime-globals."*
genericjimeglobals.'-"
genenicjime..globals. "+'

genericjtimeglobals.base-time
genericjime.globals."-"
generic -ime-giobals."-"I genericjime_lobals.*+"
genericjime.globals. microseconds
genericjtimeglobals.mi Iliseconds
genericjtimeglobals. seconds
genericjime..globals. seconds
generic...kemel-time.*>=*
genenic.kemel-time.">"
generic.kemel-time."."
generic....kemel-fime.'<"
generic -kemel-time."-"
genenc-kemel-time.'+"
genericjernel-time."*
generic..kemel-time.*""
genericjemel-time.""
generic.kemel-fime.*-"
generic..kemel-time."+"
generic .kemnel time.seconds
generic...kemel-fime. millisecondsI _ickml-ieseod

generic...kemel-time. seconds

3 CMU/SEl489TR-1 9 327

Package/Procedure to Requirements Mapping

Requirement IPackage/ProcedureI
12.1.24 gkt...body..machine -code

genericjime..giobals.to-epoch time
genericjtimeglobals-to elapsed time
genericjime.globals.to-kernel-time
genericjime..globals.to-kernel-time
generic..time..giobals.toAda duration

geneicjie..giobais.to_etapsedjime
genericjimeglobals. >=
genericjime..globals. c I
genericjime..globals. <=
genericjime.globals. >"

genericjine.giobals.'>=I
genericjime..giobals.">*
genericjime.globals. c=
genericjime.globals."<
generic ime.globals.*"
genericime..lobals.m*
genericjtimeglobals.*-"
genericjime..giobals."+ _

genericjime.globals.base-time
generic imegobals."-"
genericjtimegobals. -"
generic - ime.globals."+
genericjtimeglobals. microseconds
genericjime.globals.milliseconds
genericjime.globals. secondsI
genericjie.giobals. seconds
generic -kernel-fime.">=
generic kernelUime.>

generic -kenel-time.*<*
generic -kernel -time."-'
generic-kernel-time.-+
generic kernel time.".
generickernieltirne.-
generic-kemel-time.'"
generic-kernel time."-
generic kernel tirne.-eod
generickeneiUme. mllscod
generic~kernel-time. seconds
generic_kernel-time.miseconds

12.1.25 generic -ime.giobals
___________________generic kernel time

12.1.26 time-keeper

12.1.27 generic-time -management. synchronize
generic -time -management. synchronize
generic-processjtable3

328 CMUISEI-89-TR-1 g

Package/Procedure to RequIrements Mapping

IRequirement Package/Procedure
12.2.1 time keeper. adjust elapsed time

generic -time -management. adjust elapsed-time
clock. adju st _elapsed time

12.2.2 timejeeper.reset..epoch-time
genericjtime management.adjust epoch time

___________________clock.adjust -epoch-time

12.2.3 generic time.-management.read-clock

12.2.4 generic time...management. synchronize
generic time management.synch ronize
genericjtime-management. synchronize

12.2.5 generic-time management. synchronizeIeei-ie-aaeet sycrnz
generic-time management. synchronize

312.2.8 clock.getjtime

CM/E-IT- 2

Package/Procedure to Requirements Mapping

Requirement Package/ProcedureI
13.1.1 generic-alarm-management.set-alarm

generic-alarm..management£
13.1.2 time -keeper. remove-event

time -keeper.insert -event
timer control ler.cancelI timer
timer -controller. set-timer
genercprocess table

13.1.3 time -keeper. remove-event
time....keeper. insert -event
timer -control ler.cancel1-timer
timer -control ler.set-timer
generic..process -table
generic alarm-management.set alarm

13-1.4 generic -alarm -management
generic-alarm..management

13.1.5 generic alarm-.management.set-alarm
generic-alarmmr-anagement
generic alarmjnanagement

13.1.6 {generic-alarm~management.set alarm
113.1.7 generic...process-table

generic-alarm management.set-alarm
13.1.8 genericprocess-table

13.1.9 generiQ..process -table
generic-alarm-man&gement-set-alarm

13.1 .10 time keeper. remove -event
time..keeper-insert -event
timer -control ler.cancel-timer
timer-controller.set-timer
generic..process-table3
generic-alarm..management.cancel-alarm

13.1.11 generic..process table

13.2.1 generic-.alarm-management.set-alarm
generic..alarm...management

13.2.2 generic-alarm management.cancel-alarm3

13.2.3 generic-alarm-management

330 CMU/SEI-89-TR-1 9

Package/Procedure to Requirements Mapping3Requirement Package/Procedure
14.1 .1 generic-tool-interface.begin-collection
14.1.2 tool -interfaceglobals

____________________generic tool interface.begin collection
14.1.3 tool-interface..globals

____________________generic tool interface.begin collection

14.1.4 tool -interface..globals
generic-tool~interface. begin..collection

14.1 .5 tool logger.log message-contents
toollogger. logmessage.attributes
tool -ogger. log..process -attributes
tool-intertace..globalssceuershuei
scheduler.schedule i
genericprocess-aftbute-modif iers. killI _i-omuiainmnaeetrcev-esg

generic-communication management.receive message
genericcommunication management.receive message

generic-communication-management.send message and...waft
generic communication-management.send-message and wait
generic communication_management.send -message and wait
generic-communication Management.send-messageI14.1.6 tool logger.log~process-atributes
tool-interface..globals
generic tool-interface.begin-collection
generic tool-interface

14.1.7 generic tool interface.begin collection114.1.8 generic-tool-interface. cease -collecti -on
14.1.9 tool logger.logJprocess-attributes

tool -interface..globals
generic tool-interface.begin-collection
generic_tool_interface

14.1.10 tool Jogger. logmessage-attributes
tool-interfaceglobals
generic -tool -interface, begin-collection
generic-tool interface514.1.11 generic tool interface.cease collection

14.1.12 tool logger. log-message-atributes
tool -interface..globals
generic-tool-interface, begin-collection
generic-tool-interface

14.1 .13 tool -logger. log-..message -contents
tool-interface..globals
generic-tool-interf ace. begin-..collection

____ ____ ___generic tool interface

3 CMU/SEI-89-TR-1 9 331

Package/Procedure to Requirements Mapping

Requirement 1Package/Procedure
14.1.14 generic tool interface-cease collection

14.1.15 tool-interface~globals
generic-tool-interface. read...process-table
generic tool-interface.sizeofProcess-table
generic-tool-interface
generic~process -table.size..ofprocess-table

14.1.16 generic-tool-interface.read-interrupt table
______ ______generic tool interfaceI

14.1.17 tool~logger.log.message.contents
tool~logger.iogmessage.atributes
toologger.logprocess-atributesI

14.1.18 generic-tool-interface cease-collection
generic-tool-interface.begin-.collection

14.2.1 generic tooL-interface. begin-coliection3

14.2.2 generic-tool-interface.cease-collection
14.2.3 tooljlogger.log~message..contents

tooljlogger.log..message-atributes
tooljlogger. log..process -attributes
sched uler. schedule ih
scheduler.scheduie
generic..process-attribute-modifiers~kdll
generic communication..management.receive~message
generic communication-management.receive..message
generic communication-management.receive~.message
generic communication...management.send message..and-wait
generic-communication..management.send message..and-wait

_ eccmuiaio-aaeetsn_mesg Idwi
generic communication-management.send message.adwi

14.2.4 tooljlogger.logmessagecontents
tooljlogger.log..message..attributes
tooljo~ger.logprocess-attributes
generic-tool-interface.cease-collection
generic_tool_interface.begin.collection

14.2.5 tool~logger.log message contents
tooljlogger.log.message.attributes

tool-logger.logprocess-atributes
scheduler. schedule ih
scheduler. schedule
genericjrocess-attibute-modifiers.kil

_eei-omnctonmngmn~eev I esg
generic-communication-management.receive...message
generic communication-management. receive -.message
generic-communication-management.eeie..messaeadwf
generic-communication.-management.send message..and-wait
generic-communication-management.send message..and-wat
generic-communication-management.send messageadwi

332 CMU/SEI-89.TR-1 91

Package/Procedure to Requirements Mapping3Requirement Package/Procedure
14.2.6 tooiilogger.Jogmessage -contents

tool -ogger. log message-atributes
tooljlogger.og..process-attributes
scheduler.schedule-ih
scheduler.schedu!e
geneicprocessattibute-modifiers.kilII _ ccomuiato_maaeetr _ev-esg

generic communication-management.receive message
generic -communication_management.receive message
generic communication-management.receiv_messageadwi
geei _ comncto_maaeetsn _saeadwi

generic -communication-management.send_message-and-wait
generic communication-management.send messageanwi

generic9-R-1 comnctonmngmntsn3es3en.w

U
I

Appendix G: Requirement to Procedure Mapping
A few notes about the requirements mapping tables:

" Only procedures and functions that appear at the package specification level
occur in the table. No instantiations are included (only the generic source).

" Top-level package specifications occur only when there are internal objects that
fulfill requirements.

" Overloaded names appear multiple times.
" The ordering of procedures and entries follows the order of the entries in the

specification. 3
Requirements to Package/Procedure Mapping

Package/Procedure Behavior Performance

busio 10.1.33
10.1.34
10.1.36

bus io.initialize 5.1.3 6.2.1
5.1.4
11.1.16

busio.sendprocess-datagram 7.1.21 10.2.1 1
7.1.25 10.2.2
7.1.26 10.2.3
10.1.6 10.2.4
10.1.29 10.2.5
10.1.32 10.2.6

10.2.7
10.2.8
10.2.9
10.2.10

bus io.sendkerneldatagram 7.1.21 10.2.1
7.1.25 10.2.2
7.1.26 10.2.3 I
101.6 10.2.4
10.1.29 10.2.5

10.2.6
10.2.7
10.2.8
10.2.9

10.2.10

busio.multisend 6.1.4 I
6.1.9

dock.startclock 5.1.3 6.2.1
51.71.4I
S.1.7

12.1.2
12.1.4
12.1.7

dock.stopdock 5.1.3

5.1.4
5.1.7
12.1.2
12.1.7
12.1.7

334 CMU/SEI-89-TR-19

U

Requirements to Package/Procedure Mapping

Package/Procedure Behavlor PerformanceIock.get_time 5.1.3 12.2.8
5.1.4

I 5.1.7

12.1.2
12.1.3
12.1.4
12.1.7

clock.adjust elapsed time 5.1.3 12.2.1
5.1.4

5.1.7I 12.1.2

12.1.4
12.1.7

12.1.10

I ock.adjust epochtime 5.1.3 12.2.2
5.1.4
5.1.7
12.1.2
12.1.4

12.1.7

12.1.12

contextsavearea 5.1.4

contextswftcher.save context 7.1.4 9.2.3

contextswtcher.restore_process 7.1.4 9.2.43 context switcher.switch_processes 7.1.4 9.2.6

ontext switcher globals 5.1.3
5.1.4

dark text io 5.1.4

dark text ioto hex 5.1.4

datagramglobals 5.1.4
6.1.11

datagram-management.allocdg 5.1.4
6,1.11

datagrammanagement.delete 5.1.4
6.1.11
10.1.21

datagram-management.dequeue 5.1.4
6.1.11
10.1.21

datagram-management.enqueue 5.1.4
6.1.11
10.1.21

datagram-management.freedg 5.1.4

6.1.11

datagram-management.get first 5.1.4
6.1.11
10.1.21

datagrammanagement.new queue 5.1.4
6.1.11
10.1.21

3 CMU/SEI-89-TR-19 335

I
I

Requirements to PackageiProcedure Mapping _n

Package/Procedure Behavior Performance

datagram-managementkproc initialize 5.1.4
6.1.11

datagram-management.nproc initialize 5.1.4
6.1.11

datagram-managementfreo_queuestatus 5.1.4
6.1.11

exception-raiser 5.1.1

exception-raiser. raise_exception 5.1.1

generic-alarm-management 5.1.8
13.1.4
13.1.5
13.2.3

generic_alarm_management.set_alarm 9.1.6 13.2.1
9.1.8
9.1.22
13.1.1
13.1.4
13.1.5
13.1.6
13.1.7
13.1.9

generic alarm management.set_alarm 9.1.6 13.2.1

9.1.8
9.1.22
13.1.1
13.1.3
13.1.5 i
13.1.6
13.1.7
13.1.9

generic alarm management.cancel-alarm 9.1.22 13.2.2
13.1.10

generic communicationgIobais 5.1.4

5.1.7

genenc communication management 6.1.9
6.1.11
10.1.19
10.1.22
10.1.23
10.1.28
10.129
10.1.30
10.1.31
10.1.33
10.1.34

generic communication management.send message 7.1.21 10.2.1 I
10.1.2 10.2.2
10.1.5 10.2.5
10.1.6 10.2.6
10.1.25 10.2.11

10.1.26 14.2.3
14.1.5 14.2.5

14.2.6

336 CMU/SEI-89-TR-19

U
U

Requirements to Packge/Procedure Mapping

Package/Procedure Behavior Performance

genenc¢oommunicationmanagement.send messageand wait 7.1.21 10.2.3
7.1.25 10.2.4
7.1.26 10.2.7
9.1.6 10.2.8
9.1.8 10.2.11
9.1.22 14.2.3
10.1.2 14.2.5
10.1.3 14.2.6
10.1.4
10.1.5
10.1.6
10.1.10
10.1.11
10.1.25
10.1.27
10.1.32
11.1.12
14.1.5

genericommunication-management.sendmessage..and.wait 7.1.21 10.2.3
7.1.25 10.2.4
7.1.26 10.2.7
9.1.6 10.2.8
9.1.8 10.2.11
9.1.22 14.2.3
10.1.2 14.2.S
10.1.3 14.2.6

10.1.4
10.1.5
10.1.6
10.1.7

10.1.9
10.1.10

10.1-1
10.1.25
0.1 .2710.1.32

11.1.12
14.1.5

genericommunication management.snd-messageand wait 7.1.21 10.2.3
7.1.25 10.2.4
7.1.26 10.2.7
9.1.6 10.2.8
9.1.8 10.2.11
9.1.22 14.2.3
10.1.2 14.2.5
10.1.3 14.2.6
10.1.4
10.1.5
10.1.6
10.1.8
10.1.9
10.1.10
10.1.11
10.1.25
10.1.27

I 10.1.32

11.1.12

14.1.5

I
3 CMU/SEI-69-TR-1 9 337

I
I

Requirements to Package/Procedure Mapping

Package/Procedure Behavior Pertormance

goneric.communicationfmanagement.receivemessage 9.1.6 10.2.9
9.1.8 10.2.10
9.1.22 14.2.3
10.1.12 14.2.5
10.1.13 14.2.6
10.1.14
10.1.15
10.1.20
10.1.21
10.1.24
10.1.26
10.1.35 I
10.1.36
11.1.12
14.1.5

genericoommunication management.receive-mossage 9.1.6 10.2.9
9.1.8 10.2.10
9.1,22 14.2.3
10.1.12 14.2.5
10.1.13 14.2.6
10.1.14
10.1.15
10.1.16
10.1.18
10.1.20
10.1.21
10-1.24
10.1.26
101.35

10.1.36
11.1.12
14.1.5

gonenc.communicationmanagement.recive message 9.1.6 10.2.9
9.1.8 10.2.10 I9.1.22 14.2.3

10.1.12 14.2.5
10.1.13 14.2.6
10.1.14
10.1.15
10.1.17
10.1.18
10.1.20
10.1.24
10.1.26
10.1.35

10.1.36
11.1.12
14.1.5 I

generic communicationmanagement.allocate-devicejreceiver 7.1.14 7.2.4

generc_interrupt.qlobals 11.1.1
11.1.4
11.15
11.1.6
11.1.14
11.1.17
11.1.19
11.1.21

generic3interrupt6management 11.1.15
S11.1.20 -

3,38 CMU/SEI-89-TR-19I

Requirements to Package/Procedure Mapping _______

Package/Procedure f Behavior Performance

genericjinterruptmanagement.enable 11.1.4

genericjinterrupt~management.disable 11.1.5

generic interrupt management.enabled 11.1.7

genenic interrupt management.simulate interrupt 11.1.2
11.1.3
11.1.8

generic interrupt management.bind interrupt handler 11.1.2 11.2.3
11.1.9
11.1.10
11.1.11_ _ _ _

11.1 .13

generic-kernel-time 12.1.1
12.1.5
12.1.6
12.1.25

generic-kernel-tirneseconds 12.1.23
12.1.24

generic_kernel-timeseconds 12.1.23
12.1.243generic-kernel-timernilliseoonds 12.1.23
12.1 .24

generic-kernel-tirneseconds 12.1.23
12.1.24

gnrckernel time."," 12.1.23

generic_kernel_ime.""" 12.1.23
12.1.24

generic kernel time.""" 12.1.23

generic-kernel-time./" 12.1.23
12.1.24

generic.kerneljime."s. 12.1 .23
12.1.24

generic-kernel-time."-" 12.1.23

generic~kerel~time."c"12.1.24 ______

generic-kernel-time."-c"12.3

generic-kernel-time."<" 12.1.23

generic-kernel-time.,=" 12.1.23
12.1.24

3 CMUISEI-89-TR-1 9 339

U
I

Requirements to Package/Procedure Mapping

Packag/Procedure Behavior Performance

generic network configuration 5.1.6 6.2.1
6.1.6
6.1.10
6.1.11
7.1.14
7.1.16
10.1.6
10.1.15
10.1.26

generic.network-configuration.getprocessorid 6.1.11 6.2.1
10.1.6
10.1.15

generic networkglobals 5.1.3
5.1.4
5.1.8
6.1.11

10.1.6
10.1.15

genericprocessor management 5.1.8
6.1.6
6.1.7
6.1.8
6.1.11

genericprocessormanagementinitialize masterprocessor 6.1.1 6.2.1
6.1.3 6.2.2
6.1.4
6.1.5

generic_,orocessor management.initializesubordinateprocessor 6.1.2 6.2.1
6.1.3
6.1.4

genericjpocessor management.initialization complete 7.1.15 6.2.1
7.1.16
7.1.17
7.1.25

7.1.26

goneric_processattribute.modfiers 5.1.8
6.1.9
7.1.1
7.1.2
7.1.13

gonercprocessattribute-modifiers.die 7.1.18 7.2.2
7.1.21
7.1.25
7.1.26
8.1.12

gonericprocess-attribute-modifiers.kill 7.1.18 7.2.2
71.20 14.2.3
7.1.25 14.2.5
7.1.26 14.2.6

8.1.12
14.1.5

goneric_,rocess_attribute-modifiers.set.processpremption 9.1.12 9.2.2
9.122

I
340 CMUISEI-89-TR-19~ I

Requirements to Package/Procedure Mapping________

PackagelProcedure Behavior PerformanceIgeneric.)rocass attribute-modifiers setprocessriority 9.1.6 9.2.1

9.1.22

genericprooess attribute-modifiers wait 9.1.6 9.2.3

9.1.14
9.1.16
9.1.17

11.1-12

genericprocess attribute modifiers wait 9.1.6 9.2.3

9.1.14
9.115S9.1.17
9.1.22
9.1.29
11.112

genericjprooess attribute readers 5.1.
generic~process-attribute-readers.name-of 7.1.24

7.1.25
7.1.26__ _ _

101.1

generic..process attribute readers.who-am-i 7.1.23
genericprocess attribute-readers.gtprocesspreemption 9.1.13

generic~process.attribute readers getprocessprority 9.1.9

genericprocess-managers 5.1.6

7121

genericjprocess-managers.declarejrocess 7.1.3 6.2.1
10.1.1
10.1.6
10.1.15

generic..process-managers.declareprocess 7.1.3 6.2.1101.
10.1.1
10.1.65
10.1 .15

3 CMUISEI-89-TR-1 9 341

I
I

Requirements to Pnckage/Procsdure Mapping

Package/Procedure Behavior Performance 3
genenc.prooessmanagers.create process 7.1.4 6.2. 1

7.1.5 7.2.1
7.1.6 7.2.5

7.1.7 7.2.6
7.1.8
7.1.9
7.1.10
7.1-12
7.1.25

7.1.26
7.1.27
9.1.1
9.1.2
9.1.7

9.1.11
10.1.22
10.1 23

genericprocess managers lobals 10.1.22

I

I
I
I
I
I

I

I
I

342 CMU/SEI-89-TR-1 9 1

I
U

Requirements to Package/Procedure Mapping

Package/Procedure Behavior Performance

genericprocess table 5.1.6 8.2.1
7.1.4
7.1.6
7.1.7
7.1.9

7.1.21U 7.1.27
8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.1.9
8.1.10
8.1.11
81.16
9.1.7
9.1.8
9.1.9
9.1.11
9.1.12
91.1.3
91.15
9.1.16
91.19
9.1.20
9.1.23
9.1.29
10,1.2
10.1.3
10.1.7
10.1.8
10.1.12
101.16
10.1.17
101.22
10.1.37
10.1.38
10.1.39
12.1.11
12.1.13
12.1.18
12.1.19

12.1.27
13.1.2
13.1.3
13.1.7
13.1.8

13.1.9
13.1 .10

13.1.11

generic_process table,"<= 5.1.4

genericprocessjtable."<=" 5.1.4

genericproess table.createprocess information record 5.1.4

genericprocesstable.destroyprocessinformation record 5.1.4

generic_.process table.initialize process table 5.1.4

generic process-table.locate_ process

CMU/SEI-89-TR-19 343

Requirements to Packag*lProcedure Mapping

Pacicage/Proceduro T- Behavior Performance

generic queue manager. create 5146.2.1

genericprouessatal eie 5.1.4~s tab.e

geneicqueuemanager.delete 5145.2.4

[generic~queue.manager.delqee 5.1.4 5.2.4
goi_______________________ 5.1__ A__5.2.4

Igeneric queue manager.dequeue 5.1.4 5.2.4

generic queue manager.renquee 5.1.4 5.2.4

generic queue manager.deqheue [5.1.4 5.2.4

generic queue manager reeemen 5.. 5.2.4

generic queue-manager.gemty head Ajl 5.2.4

generic queue managerge endilemieto 5.1.4 5.2.4I

genericqueu eman ag er. initial ize ba dwardIterator 5.1.4 5.2.4

genenicqueuemanager.end of_queue 5.1 4 5.2.4
gei__ e____ere__ __ __ __ 5.1.4__ __ __ 5..

generic_queuemanager.eoe next 5.1.4 5.2.4

genri queue-9-R- maaermv9et514[..

I
I

Requirements to Package/Procedure Mapping

Package/Procedure Behavior Performance

generic-schedule types 5.1.6
5.1.8
9.1.2
9.1.3
9.1.4
9.1.5
9.1.10
9.1.23

genericsemaphoremanagement 5.1.8 8.2.1
8.1.1
8.1.2
8.1.14

generic semaphoremanagement.claim 8.1.3 8.2.2
8.1.4
8.1.7
8.1.8
8.1.9
8.1.16

9.1.6
9.1.8

genericsemaphore_management.claim 8.1.3 8.2.2

8.1.4
8.1.5
8.1 .7
8.1.8

~8.1.9
8.1.16

9.1.6
9.1.8genericsemaphoremanagement.claim 8.1.3 8.2.2

8.1.4

8.1.6
~8.1.7

8.1.8
8.1.9

~9.1.6
9.1.8

generic_semaphore_management.release 8.1.10 8.2.3

8.1.11~8.1.13
8.1.15

genenic-storage _manager .initialize 5.1.4 6.2.1

Igeneric_storage_manager allocate 5.1.4 5.2.4

generic-storage_manager.deal locate 5.1.4 5.2.4

generic-timeslice-management 5.1.8 9.2.4
9.1.3 9.2.6

9.1.4 9.2.7
9.1.5
9,1.10I 9.1.21

9.1.24
9.1.26

generictimeslieamanagement.settimslia 9.1.18 8

CMU/SEI-89-TR-1 9 345

Requirements to Package/Procedure Mapping ________

Package/Procedure Behavior Performance

genenicjimesiice-management.enable time-slicing 9.1.19 9.2.5

genenicjimeslice-management.disabletime-slicing 9.1.20 9.2.5

genericjtimeglobals 12.1.1I
12.1.25

genenicjime.gobals.create-elapsed-time 12.1.9

generic timoglobals.create-epoch time 12.1.9
generic time..globals. seconds 12.1.23

_____ ____ _____ ____ 12.1 .24

generic time~globals. seconds 12.1.23
12. 1.24

generic tim e~globals.milliseconds 12.1.23
12.1.241

generic timeglobals. microseconds 12.1.23

12.1.24

gene ric timeglobals."." 12.1.23
12.1.24

genenc-timeglobals."-' 12.1.23
12.1.24 _______I

genenicjimeglobals.ba-ti 12.1.23
12.1.24

genericjtimeglobals.bae im 12.1.23

geei ie12.1.24
geeictmglobals."-" 12.1.23

12.1.24

generic timegobals."- 12.1 .23
12.1.24

generic timeglobals.- 12.1.23

genericjtimegl1obals.7 12.1.23
12. 1.24

geneic-time~lobals.Y" 12.1.23I
12.1 .24

generic time~qlobals."<" 12.1.23
12.1.24I

generic timeglobals. "c" 12.1.23
12. 1.24

generic timr._globals.">-* 12.1.235
12.1 .24

generic timeglobals."<." 12.1.23
12. 1.24

genenc-time~lobals."<" 12.1.23
12. 1.24

generic time~globals.">." 12.1.23
_____ ____ ____ ____ 12.1 .243

346 CMUISEI-89-TR-1 91

I
I

Requirements to Package/Procedure Mapping

Package/Procedure Behavior Performance

generictimeglobals.">=" 12.1.23
12.1.24

generic timeglobals.toelapsed-time 12.1.23
12.1.24

generic timeglobals.to Ada duration 12.1.23
12.1.24

generictime.globals.tokernel time 12.1.23
12.1.24

generic time_globals.to kerneltime 12.1.23
12.1.24

generic time globals.to elapsed time 12.1.23
12.1.24

generic time globals.to epoch time 12.1.23
12.1.24

generictimemanagement 5.1.8
6.1.6

12.1.2
12.1.3
12.1.7
12.1.8
12.1.9
12.1.11
12.1.13
12.1.14

generictime_management.adjustelapsedtime 12.1.10 12.2.1

generictimemanagement.adjust epoch time 12.1.12 12.2.2

generictime_management. read-clock 12.1.15 12.2.3

generictimemanagement.synchronize 12.1.16 12.2.4
12.1.17 12.2.5
12.1.20
12.1.21

generic time_management. synchronize 12.1.16 12.2.4
12.1,17 12.2.5
12.1.18
12.1.20
12.1.21
12.1.22
12.1.27

generictimemanagement.synchronize 12.1.16 12.2.4
12.1.17 12.2.5
12.1.18
12.1.20
12.1 .21
12.1.22
12.1.27

generic tool interface 14.1.6
14.1.9
14.1.10
14.1.12
14.1.13
14.1.15
14.1.16

CMU/SEI-89-TR-19 347

Requirements to Packago/Proceduro Mapping _______

Package/Procedure Behavior Performance

generic-tool-intoiface.beginoolecton 14.1.1 14.2.1
14.1.2 14.2.4
14.1.3
14.1.4I
14.1.6
14.1.7
14.1.93
14.1.12
14.1.13
14.1.13 14.1.1

generic-tooL Iinterface ease col lection 14.1.8 14.2.2
14.1.11 14.2.4
14.1.14
14.1.18

genrictoo~inerfce~ize________-abl 1411

genericjtooljinterf ace.sie.pfrocessable 14.1.15

g eneric tool interface. read interrupt table 14.1.16

gkt body_ macfhineocode 5.1.4
12.1.23
12.1.24

hardware-interface 5.1 .4

hardware intorfaceto hw-bits8 5.1 .4

hardware-interaces.tohw-byteytr 5.1.4

hardware-interface.tohwbitsBptr 5.1.4

hardware interfaoe.tohw-bitsSptr 5.1.4

internalprocess-managoment.getnext~rocess-number 5.1 .4 5.2.4
10.1.1

internal~processmanagement.gtnullprocess-number 5.1.4 5.2.43

internalprocess-management.create-intemalprocess 5.1.4 6.2.1
6.1.11

internal~yrocessmanagement.create-kenel-reocesses 5.1.4 6.2.1I

interprocessor interrupts 5.1.4

11.1.6

interprocessor-interrupts.enable-kn interrupt 5.1 .4
6.1.11

interprocessor-nterrupts generate jmnjntorrupt 5.1.4
6.1.11

interrpt names 11.1.13
11.1 .16
11.1.21

ipi body machine.-oods 5.1.4
_ __.1.__1

kernel encapsulation.in-interrupt 11.1.2

348 CMU/SEI-89-TR-1 9I

Requirements to Package/Procedure Mapping ________

PakaePrcdueBehavior Performane
kemelexcepions5.1.1

11.1.18

kernel-exceptions to string 5.1 .4
kernel interrupt management 11.1.15

11.1.20Ikernel-interrupt management.enable 11.1.4

kernel-interrupt managemont.disable 11.1.5

kerneljinterruptmanagment. enabled 11.1.7

kernel interrupt management.simulate interrupt . 11.1 .8

kenlitru~aaeetbn-nerpade 11.1.2 11.2.3
11.1.9I 11.1.10
11.1 .11
11.1.13

kim body machine-code 5.1.4 11.2.1
11.2.2
11.2.43 ics body machine code 5.1.4

Ilh body machine-oode 5.1 .4
6.1.11

Ilim body machine code 5.1.4 11.2.1
________ _11.2_2

11.2.2

Ilpe bodylInitialize Process State 5.1.4Ilow-level-clock 5.1.4
12.1.3
12.1.153 owleve context switcher. hw save-context 7.1.4

low- * alcontext swtcher.hw-restore~process 7.1.4

low-level-context switcher.hw switchprocesses 7.1.4Ilow-level-hardware 5.1.3
5.1.4
6.1.113low-level-hardware.mynetwork-address 5.1.3
5.1.4
6.1.11

low-level-hardware.islKproc 5.1.3

6.1.11

low-level-hardware.is-Nproc 5.1.3

.6.1 111

low-level-hardware.P 5.1.3

6.1.11
low-level-hardware.V 5.1.3

ICMU/SEI-89-TR-19 34

Requirements to Packages/Procedure Mapping ________

IPackage/Procedure Behavior Performance
low-level hardware.set interruptpriority 5.1.3

5.1.4

low level hardware.reset interruptpriority 5.1.3
5.1.4
6.1.11

low-level intemiupt managementI

low-level interrupt management.bind-tast-interrupt 5.1.3
5.1.4

low-level interrupt management.bind slow interrupt 5.1 .3
5.1.4
11.1 .11

low-level-interrupt managementinitialize 5.1 .3
5,1.4
11.1 .16

low_leveolprocess encapsulation.initializeprocess state 7.1 .4

low level~process encapsulation indirect call 7.1.4
7.1.5

low-level storage manager allocate 5.1.4

memory addresses 5.1 .3
5.1.4
6.1 .11

mvmel 33A definitions 5.1.3
5.1.4
6.1.11

mz8305_definitions 5.1.3
5.1.4
6.1.11

network-cnfiguration 5.1.6 6.2.1I
6.1.10
6.1 .11
7.1.14
7.1.16I
10.1.6
10.1 .15
10.1.26

network~conf iguration.getprocessoro 6.1.11 6.2.1
10.1.6
10.1.15

nproc.main_unit 5.1.3
5.1.4

t6.1.11

350 CMU/SEI-89-TR-19I

Requirements to Package/Procedure Mapping

Package/Procedure Behavior Pertormance

parallolio-controlle r. intia lizo_rocv; 5.1 .3
5.1.4

_________ ________ 6.1.11 _ _ _ _

parallel-iocntroller.intialize xmft; 5.1 .3
5.1.4
6.1.11

parallel-iooontrollor.enable-recvjnterrupt; 5.1 .3
5.1.4
6.1.11

parallel _ontrollor.enable-xmit-interrupt; 5.1 .3
5.1.4
6.1.11

parallel-ioontroller.disable-recv-interrupt; 5.1 .3
____ ____ ____ ___ 5.1.4

6.1.11

paralIlel-i ocontrol ler.d isab le-x mit-interrupt; 5.1 .3
____ ___ ____ ___ 5.1.4

6.1.11

parallel-io-ontroller.recv-buffer-full 5.1 .3
5.1.4

_ .1.11_

parallel io controller.xmft-buff er_enpty 5.1.3

paralelo~cntrolera~nwlege r~ iterupt5.1 A3

6.1.11

parallel-iocontroller.acknowlodgexmft interrupt 5.1 .3
5.1.4
6.1.11

parallel io controller.aenowledex iterp 5.1.3

parallel io controller.receivpacet 5.1 .3
5.1.4
6.1.11

processencapsulation 7.1.12

process__encapsulation.dummy_ call-frame 7.1.4
processjindex-able.get.process identifier 6.1 .11 5.2.4

10.1.6

10.1.15
process index table.getprocess index 6.1 .11 5.2.4

10.1.6I 10.1.15
processjindex-table.set~process index 6.1.11 6.2.1

10.1.6
process ~ ~ ~ 1.1 15e abece ..I~~ ~~~ ~~ prcs neal~laprocess index 6.1 .1162.

10.1.6
10.1.15

CMU/S EI-89-TRF-i 9 351

I
I

Requirements to Package/Procedure Mapflng

Package/Procedure Behavior Performance I
scc_.porta.allocate 5.1.3 5 2.4

5.1.4

sccjporta.deallocate 5.1.3 5.2.4
5.1.4

scc porta.disable-rx interrupts 5.1.3 5.2.4
5.1.4

sccporta.disable_txinterrupts 5.1.3 5.2.45.1.4

sccporta.ensable_rx_interrupts 5.1.3 5.2.4
5.1.4

scc_.porta.enabte tx_interrupts 5.1.3 5.2.4
5.1.4

sccporta.get 5.1.3 5.2.4
5.1.4

scc_.porta getbyte 5.1.3 5.2.4
5.1.4

sccjporta.initialize 5.1.3 5.2.4
5.1.4 6.2.1

scc.porta put byte 5.1.3 5.2.4
5.1.4

sccjporta.send 5.1.3 5.2.4

5.1.4
5.1.264

scheduler 9.1.26
9.1 28 I

scheduler.inftalize 5.1.4

schduler.insertprocess 9.1.5 5.2.4
9.1.23

scheduler removeprocess 9.1.23 5.2.4

scheduler schedule 9.1.6 5.2.4 I
9.1.8 9.2.4
9.1.12 9.2.6
9.1.23 9.2.7

9.1 24 14.2.3
9.1.25 14.2.5
9.1.27 14.2.6
14.1 5

scheduler .schedule ih 9.1.23 5.2.4
9.1.24 9.2.4
9.1.25 9.2.6
14.1.5 9.2.7

14.2.3
14.2.5
14.2.6

tc_bodymachine code 5.1.4

timer controller.initialize 5.1.3 6.2.1
5.1.4
5.1.7 3

352 CMU/SEI-89-TR-1, 9

I

Requirements to Package/Procedure Mapping

Package/Procedure Behavior Performance

timercontroller.initialize timer 12.1.3

timer-controller.enable timer 12.1.3

timer controller.disable timer 12.1.3

timer controller.acknowtedgetimer interrupt 12.1.3

timer_cortroller.get-currentcount 12.1.3
12.1.15

timercontrollerset timer 5.1.3
5.1.4
5.1.7
8.1.5
8.1.6
9.1.15
9.1.16
9.1.19
9.1.20

I 10.1.7

10.1.8
10.1.16
10.1.17

timer controller.cancel-timer 5.1.3
5.1.4
5.1.7
8.1.5
8.1.6

9.1.15
9.1.16
9.1.19

9.1.20
10.1.7
10.1.8
10.1.16
10.1.17

time-bumer.sponge 5.1.4

timesliceparameters 9.1.18
9.1.19
9.1.20
9.1.21

time-keeper 8.1.12
12.1.26

timekeeper.initialize 5.1.3 6.2.1
5.1.4
5.1.7

1 1 11.1.161

I CMU/SEI-89-TR-19 353

U

Requirements to Package/Procedure Mapping

Package/Procedure Behavior Performance

time keeper.insert_event 5.1.3
5.1.4
5.1.7
U,.5

8.1.6
9.1.15
9.1.16
9,1.19
9.1.20
10.1.7
10.1.8 I
10.1.16
10.1.17

time-keeper.remove event 5.1.3
5.1.4
5.1.7
8.1.5
8.1.6
9.1.15
9.1.16
9.1.19

9.1 20
10.1.7
10.1.8
10.1.16

10.1.17

time keeper.adjust elapsedtime 12.1.10 12.2.1
12.1.11

time keeperresetepoch time 12.1.12 12.2.2
12.1.13

timekeeperqlobals 5.1.4

tool intedace-globals 14.1.2

14.1.3
14.1.4
14.1.5
14.1.6
14.1.9 I
14.1.10
14.1.12
14.1.1314.1.15I

tool interface output 5.1.7

tool k)gger.log_,rocess attributes 14.1 5 14.2.3
14.1.6 14.2.4
14.1.9 14.2.5I
14.1.9 14.2.514.1.17 14.2.6

toollogger. logmessage attributes 14.1.5 14.2.3
14.1.10 14.2.4
14.1.12 14.2.5
14.1.17 14.2.6

toollogger.logmessage contents 14.1.5 14.2.3
14.1.13 14.2.4 I
14.1.17 14.2.5

14.2.6

I
354 CMUISEI-89-TR-1 9 I

I
I
1 Appendix H: Short Names

Package Short Names

* Package Short Name

ALARM_MANAGEMENT AM

BUSIO BIO

LOCK C

COMM UNICATIONGLOBALS CG

COMMUNICATIONMANAGEMENT CM

CONTEXTSAVEAREA CSA

CONTEXTSWITCHER CS

CONTEXTSWITCHERGLOBALS CSG

CS BODY CS

DATAG RAMGLOBALS DGG

DATAGRAMMANAGEMENT DGM

EXCEPTIONRAISER ER

GENERIC_ALARMMANAGEMENT GAM

GENERICCOMMUNICATIONGLOBALS GCG

GENERICCOMMUNICATIONMANAGEMENT GCM

GENERICINTERRUPTGLOBALS GIG

GENERIC_INTERRUPTMANAGEMENT GIM

GENERIC_KERNEL_TIME GKT

GENERIC_NETWORKCONFIGURATION GNC

GENERICNETWORKGLOBALS GNG

GENERICPROCESSORMANAGEMENT GRM

GENERIC_PROCESSATTRIBUTEMODIFIERS GPAM

GENERICPROCESSATTRIBUTE_READERS GPAR

* GENERICPROCESSMANAGERS GPM

GEN ERICPROCESSMANAGERSGLOBALS GPMG

GENERICPROCESSTABLE GPTB

GENERICQUEUEMANAGER GQM

GENERICSCHEDULETYPES GST

GENERICSEMAPHOREMANAGEMENT GMM

3 GENERICSTORAGEMANAGER GSTM

CMU/SEI-89-TR-19 355

I

Package Short Name

GENERICTIMESLICEMANAGEMENT GTSM

GENERICTIMEGLOBALS GTG

GENERICTIMEMANAGEMENT GTM 3
GENERICTOOLINTERFACE GTI

HARDWARE INTERFACE HI

INTERPROCESSORINTERRUPTS IPI

INTERRUPTGLOBALS IG

INTERRUPT-MANAGEMENT IM

INTERRUPTNAMES INames

KERNELENCAPSULATION KEN

KERNELEXCEPTIONS KE

KERNELINTERRUPT MANAGEMENT KIM

KERNEL-TIME KT

KIM-BODY KIM I
LLIMBODY LLIM

LOWLEVELCONTEXTSWITCHER LLCS 3
LOW-LEVELINTERRUPTMANAGEMENT LLIM

LOWLEVELPROCESSENCAPSULATION LLPE

LOWLEVELSTORAGE_MANAGER LLSM

MEMORYADDRESSES MEM 3
MVME133A_DEFINITIONS MVME

MZ8305_DEFINITIONS MZ

NCTDEBUG NCTD

N ETWORKCONFIGU RATION NC

NETWORKGLOBALS NG

NPROC NPROC

PARALLEL_10_CONTROLLER PIO I
PE_BODY PE

PIOBODY PIO

PROCESSORMANAGEMENT RM

PROCESS_ATTRIBUTEMODIFIERS PAM

PROCESSATTRIBUTEREADERS PAR

PROCESS-ENCAPSULATION PE 3

356 CJ/SEI-89-TR-19 I

I

Package Short Name

PROCESSINDEXTABLE PIT

PROCESSMANAGERS PM

PROCESSMANAGERS GLOBALS PMG

PROCESSTABLE PTB

PTBDEBUG PTBDEBUG

SCCPORTA PORTA

SCHEDULER SCH

SCHEDULETYPES [ST

SEMAPHOREMANAGEMENT [MM

TCBODY TC

TIMERCONTROLLER TC

TIMESLICEMANAGEMENT TSM

TIMESLICEPARAMETERS TSP

TIMEGLOBALS TG

TIMEKEEPER TK

TIMEKEEPERGLOBALS TKG

TIMEMANAGEMENT TM

TOOLINTERFACE TI

TOOLINTERFACEGLOBALS TIG

3 TOOLINTERFACEOUTPUT TIO

TOOLLOGGER TL

I
I
I
I
I
I

ICMU/SEI-89-TR-1 9 357

I
I

Appendix I: Overview of VMS Version
The VMS version of the Kernel has the same functionality and structure as the 68020
version. The algorithms shown in the PDL of this document are applicable to both the
68020 and VMS versions. It is only in the code that the impact of each specific target I
manifests itself.

The resulting logical structure of the VMS version is shown in Figure 47. This view m
highlights where VMS concepts were applied to the Kernel.

" Each "node" is a single VMS process, with the Main Unit as the driver and the
Kernel processes executing under control the Kernel. All of the "nodes" run on
a single VAX processor, using windows or termine!s to simulate nodes in a
network. 13 This simulates the 68020 version, where each Main Unit executes
on its own, dedicated processor.

" Each Kernel uses a unique VMS TIMER for use in maintaining timeout and
alarm operations. This replaces the 68020 parallelio timers with VMS timers. 3

" Each Kernel uses the shared VMS (system) clock. This replaces the individual
68020 clocks with one VMS system clock.

* Each Kernel has its own mailbox, designated by node number, for receiving I
input from any other node in the system. This replaces the 68020
interprocessor inte: 'jpts with VMS Asynchronous System Traps (ASTs).

" Each Kernel has access to the mailbox of all other Kernels in the system (as
illustrated for node 0 in Figure 47). This replaces the Nproc (and all associated
I/0 packages) with VMS system services and shared mailboxes for
communicating with remote Kernels. I

The net result is that all the special-purpose hardware required for the 68020 version
(timers, parallel I/O controllers, Nproc, etc.) has all been absorbed by services provided by
VMS. Additional information about the VMS imple'nentation is described in [port 89].

I
I
I
I

may be possible to run each node on a different VAX machine communicating over DECnet, but no work 3
has been pursued along these lines.

358 CMUISEI-89-TR-19 I

VMS Timer VMS Timer

ManUiI0 anUi
Noe0NdI

Noe0NdI
MaloIalo

VMIlc
Noe2NdI
MaloUalo

ManUiIanUi
Noe2NdI

-AST

I Figure 47: VMS Overview

CMU/SEI-89-TR-1 9 359

I
I

Appendix J: VMS Ada Compiler Dependencies

This appendix explains the compiler and machine dependencies of the DARK port to
VAXVMS. The structure of this appendix parrallels that of Part IX, TeleSoft Ada Compiler
Dependencies.

J.1. Introduction i
The DARK Project has ported DARK to VAX/VMS. This required three sets of changes

1. Adapting the compiler-dependent packages to VAX Ada.

2. Adapting the machine-dependent parts to the VAX-1 1.

3. Replacing some functional modules by others that invoke VAX Ada runtime i
services.

This appendix addresses the first two items; the third is explained in [port 89].

J.1.1. Relevant Documents
VAX Ada Language Reference Manual [VLRM] (DEC AA-EG29A-TE)

VAX Ada Programmers Runtime Reference Manual [VPRRM] (DEC AA-EF88A-TE) 3
[DARK Ada Style Guide]

[DARK VDIG] i

J.2. Major Dependencies I
The DARK software exhibits dependencies on the Ada development system in three major
areas:

" Aspects of basic software architecture and design.

* Representation and use of basic data types. I
" Encapsulation of hand-coded assembler.

These will be discussed at successively greater levels of detail. I

J.2.1. Software Architecture and Design 3
The features considered efficient by the Ada style guide for the most part remain efficient,
including the representation of guarded regions.

There are two potential new areas of inefficiency

1. Parameters are never passed by value; they are always passed by reference
and the caller makes a local copy. If the corresponding actual is a packed

360 CMU/SEI-89-TR-19 l

I
I

record component, or an object of i constrained subtype, the caller also
makes a copy. This is very inefficient; its potential impact on DARK is minor,
though, since the VMS version is not intended to support real-time
applications [VPRRM 3].

2. When the target of an UncheckedConversion is a constrained record type,
the compiler generates a constraint check. This potentially affects the
datagram allocation code [VI PM 13.10].

J.2.2. Basic Data Types
The basic data types werg in accordance with the expectations of the project; the
differences from TeleSoft MC68020 Ada are within the scope of the Hardware_Interface
abstraction [VLRM C].

I The type System.Address is private, but there are many useful operations defined on it
[VLRM F].

I J.2.3. Encapsulation of Assembler
Full information is given in [VLRM 13.9]. It is straightforward to interface to separate
machne-code bodies, though the specifications all have to be changed. It is also possible
to interface data objects as well as subprograms; this feature makes it easier for
machine-code bodies to see global variables declared in Ada [VLRM 1309a].

However, the compiler does not support the package MachineCode [VLRM 13.8], so one
module of DARK had to be rewritten (the subprogram Process_Encapsulation.IndirectCall).

Calling conventions are given in full in [VPRRM 3.4]. To a limited extent, they are tailorable.I
J.3. Software Architecture and Design Dependencies

I This chapter gives the main compiler dependencies and the findings with respect to the VAX
Ada compiler.

I J.3.1. Code Customization
Coding conventions taly on these features of the Ada compiler:

I * Generic instantiation is performed by code substitution at compile time.

* Constant actual values are substituted for the formals, and simple constant
comparisons will be done at compile time.I Code guarded by conditional statements that are known at compile time to be
false ("dead code") will be removed by the compiler and will not generate any
object code. (This is not necessary for correct functioning of the Keinel, but
makes it smaller and faster.)

According to the compiler docL, lentation, all these assumptions are valid. The compiler
tests showed that the given optimizations are, in fact, performed.

I CMU/SEI-89-TR-19 361

I
I

J.3.2. Representation of Errors
The Kernel systematically represents error conditions by user-defined exceptions, and
reports them by raising the exception, presumably to be handled by the invoking code.

For this to be feasible, certain compiler features are assumed: i
" The execution cost of guarded regions and unraised exceptions is very small,

preferably zero.
" The cost of raising and propagating an exception is reasonable; in particular, it

is not so great as to prevent timely recovery by the exception handler.
" The exception mechanism can function safely and accurately in the context of a

DARK process.

The first assumption is false. The VAX hardware automatically creates a null guarded 3
region as part of the procedure call mechanism; this costs one longword of space and a
certain amount of time. However, since this overhead is an inescapable part of the
subprogram call, it might as well be put to good use. The marginal cost to DARK is, indeed, I
zero.

The cost of raising and propagating an exception is high, but unavoidable given the VAX
signal-handling design. An explicit raise is encoded as a call to a library routine.
Unfortunately, so is a compiler-generated raise, which implies that a successful constraint
check, for example, is followed by a branch around a call, the call and associated
parameters being big enough to cause an -cache miss.

Since the exception mechanism is part of the standard call sequence, exceptions can freely I
propagate through assembler bodies. Means exist to raise exceptions from assembler
code. A stack plug can be constructed either in Ada or in assembler. n

The current DARK alarm management design will work without change.

J.3.3. Module Initialization i
The pragma ELABORATE is implemented [VLRM B]. No difficulty was anticipated in the
module initialization code. Unfortunately, there were difficulties with generic instantiations; n
as a consequence, it was necessary to include in every module that performs an
instantiation a pragma ELABORATE in specifying the generic being instantiated. This
change could safely be made in the other version of DARK, sc, is not VMS specific.

J.3.4. Chapter 13 Issues 3
Those parts of the Kernel that manipulate the target machine rely to some extent on the
features provided in Chapter 13 of the Ada Language Reference Manual

, specific features required are: I
* Size specifications [13.2(a)] are implemented, and will indeed pack objects to

the necessary bit or byte level.

362 CMU/SEI-89-TR-1 9

I
I

" Record representation clauses [13.3] are implemented as needed.
" Address clauses [13.5] are not implemented. The trick of using an access
value set by hand will work, but was not needed in the port since there was no
longer a requirement to bind a data structure to a specific address.

" The package System [13.7] is present as needed.

" The system-dependent named numbers [13.7.1] are defined properly.

" The attribute 'Address [13.7.2] is defined for both objects and subprograms.
There are some words about subprograms in [VLRM 13.7.2], whose effect is:

i any subprogram whose address is taken must be the subject of an
EXPORT pragma

• such subprograms must be declared at the outermost level of a package
i specification or body

" The appropriate pragmata were added to comply with the first restriction; the
DARK code already obeyed the second.

e The attribute 'Size [13.7.2] is implemented.
" The machine-code insertion facility [13.8] is not implemented; the relevant

module had to be rewritten.
" The pragma Interface is implemented as required. In fact, it is rather more

powerful than required. In particular, it allows data objects to be shared
between Ada and assembler - which allowed some of the code to be simplified
- and it allows, to a limited extent, the user to specify the parameter-passing
strategies to be used when Ada calls assembler. Unfortunately, one strategy it
does not permit is to pass the parameters in registers

" The pragma Infine is implemented, and works across compilation boundaries.
" The generic UncheckedConversion [13.10.2] is implemented for all relevant

combinations of types. In addition, the VAX version of package System
contains some useful instantiations, including for example conversions between
integers and addresses. One problem with the VAX implementation, however,
is that the compiler insists on checking the constraints of the target subtype
after the conversion. Problems were anticipated with this, but were not in fact
encountered.

I J.3.5. Pragmas
The Kernel uses the following standard p.agmas:

I * pragma INLINE.
o pragma INTERFACE.

These are both implemented, as detailed above.

I

I CMU/SEI-89-TR-l 9 363

I
I

J.3.6. Ada Use Subset
As well as making certain assumptions about what the Ada system does provide, the Kernel
was designed and written under certain assumptions about what it need not provide. In
effect, it employs an application subset of the language, avoiding constructs that the
implementation team believed either unnecessary or possibly inefficient.

* The Kernel makes no use of tasking.

*Records with discriminants are not used. This has no visible impact on the U
application, but has caused some slightly strange coding styles in parts of the
Kernel.

" Objects of dynamic size are never declared within subprograms. I
" Subprograms are not nested within other subprograms.
" Allocated storage is never deallocated, either explicitly or implicitly. All uses of

the Ada allocator could be removed from the Kernel, if it seemed desirable for a
port to use a custom storage-management system.

" The separate clause is not used. This is to avoid the name management
problems that arise with library subunits.

All the above were still worth avoiding. Objects of dynamic size are particularly unpleasant I
in VAX Ada.

J.4. Basic Data Types and Operations

Appendix L contains the hardware tailoring for the VAX-1 1 with the current compiler and
version.

J.5. Encapsulation of Assembly Code
Appendix A contains the assembler interface for the VAX-1 1 with the current compiler and
version.

I
I
I
I

364 CMU/SEI-89-TR-1 9I

I
I

Appendix K: VAX-11 Assembler Interface
This appendix gives the assembler interface used in the VAX-1 1 with the current compiler
and version. Full details of the compiler and version conventions can be found in [VPRRM
31.

I K.1. Linkage

Unkage is effected by the pragma INTERFACE, which can also specify the
parameter-passing strategy and the linkname. It is possible to implement overloaded
subprograms in machine code, provided the linknames are unique.

I The linker accepts 31 characters as significant, which was enough to allow the pervious
DARK conventions for linkname generation to be used unchanged.

I Within the assembler body, the linkname is generated by a standard GLOBAL directive:

* GLOBAL inkname

U The assembler routines must be presented to the Ada library as implementations of
package or subprogram bodies, as described in [VPPRM 3]. A file may contain either Ada
code or assembler code, but not both. DARK naming conventions require that a file
containing assembler code be named exactly as it would be if it were in Ada, but with the
additional suffix _machinecode. An Ada specification can be implemented, therefore, by at3most one Ada body and one assembler code body. However, the VMS Ada library does not
permit more than one body for any specification. In that event, only one DARK module had
originally possessed two bodies - process encapsulation - and that had to be revised for
other reasons.

I K.2. Program and Data Sections

Code and data must be generated in the appropriate sections (PSECTs) and with the
correct attributes. These are given in [VPRRM 3.4] and were copied exactly in the
machine-code bodies. In particular, the code must be read-only, reentrant, and position

3 independent.

K.3. Data Representation

The data renresentations common to both Ada and assembler levels are as specified in
Appendix A. There was no difficulty with these representations.

The supplied package Standard also defines a 64-bit integer data type and associated
operations. Unfortunately, it is defined as Unsigned_Quadword, which made it inappropriate
as an efficient representation of KernelTime, so the DARK module kerneltime had to be
rewritten in VAX machine code.

I CMU/SEIJ-9-TR-1 9 365

I
The definition of time used by the Kernel was, however, changed to correspond to the VMS
representation. This is as a 64-bit signed integer with 100 ns resolution. This change was 3
encapsulated in the kerneltime module; the only external impact is that the legal range of
epoch and elapsed time contracted to approximately 15,000 years.

K.4. Procedural Interface
The procedural interface uses the following protocol [VPRRM 3]

K.4.1. Entry and Exit Protocol I
" Call is by a CALLS instruction, according to the VAX standard. This requires a

valid stack front pointer to be maintained in SP, and a valid frame pointer in FP.
Parameters are evaluated and pushed onto the stack in reverse order before
the call.

" Return is likewise by an RET instruction, which pops the stack frame and the
parameters. Accordingly, out parameters cannot be returned by value - the
parameter space is deallocated by the RET before the caller can reclaim the
returned value.

K.5. Register Jsage 3
* The called routine must save and restore any registers it uses except RO and

Ri. 3
" It must return a simple function result in RO, if 32 bits or less, and in <RO,R1> if

64 bits or less and scalar. Other function results are returned in a hidden out
parameter.

K.5.1. Stack Manipulation
" The called routine must at all times maintain in SP a valid hardware stack I

pointer. It must also maintain a valid frame pointer in FP.
• The called routine may claim local storage by lowering the stack pointer; it need

not restore the old value since the RET instruction automatically restored SP
from FP.

" The called routine does not have to build any special stack frame for Ada. 3
K.5.2. Parameter Passing
The parameter passing conventions are as follows. U

I

36CMU/SEJI89TR-1 9 I

U
I

K.5.3. Mode of Transmission
* Parameters are never passed by value. If the RM requires the effect of

by-value transmission, the parameter is passed by reference and the caller
makes a local copy. If the parameter is of mode In out or out, and the returned
value might violate a constraint, the caller also makes a local copy and passes
a pointer to it.

* Parameters of simple (scalar, access and address) types are passed by 'fake
value' in this manner.

* Parameters larger than 4 bytes, and all parameters of structured types, are
passed by simple reference. This reference is the machine address of the
lowest-numbered storage unit, and is a 4-byte value.

* Some parameters of dynamic size are passed by VAX 'descriptor' of which the
less said the better.

K.5.4. Manner and Order of Transmission
* Parameters are pushed on the hardware (SP) stack in reverse order. That is,

the rightmost parameter is pushed on the stack first, and the leftmost last.3 o All parameters passed by reference pass the address as an In parameter.

K.5.5. Accessing Parameters and Returning Function Results
All simple parameters can be treated as if passed by reference.

* Results not larger than 4 bytes are returned in register RO. Scalar results not3 larger than 8 bytes are returned in <RO,R1>.

* Other results are returned in a hidden out parameter whose address is passed
as the first parameter to the function, before the first true parameter.

*Although some Ada types require hidden parameters to be passed along with
their actual values, no such types are used by any assembler subprogram.

K.6. Exceptions

I K.6.1. Raising Exceptions
The assembler code never raises a user-defined exception. Where appropriate, it raises an
intrinsic exception by an explicit call of LIB$STOP, which is part of the Ada runtime.

K.6.2. Exception Propagation
The Ada runtime propagates exceptions upwards through stack frames, using the saved
information in each stack frame to find each caller.

3 In order for this to function, every assembler body that can raise an exception, and every
body through which an exception might propagate, must build a valid stack frame. This is3 done as part of the hardware CALLS instruction, which therefore shall be used throughout.

SCMU/SEI-89-TR-19 367

I
I

K.6.3. Guarded Regions
The representation of guarded regions was not researched.

I
I
I
I
I
I
U
I
I
I
I
I
I
I
I

366 CMU/SEI.89-TR-1 g I

I
I

Appendix L: VAX-11 Tailoring
What follows is barely different from the MC68020 version, and captures the identical
functionality. Note that, had the types in package System been used directly, DARK would
have had to change all uses of Integer, LongjInteger, and Address.

I L.1. Sizes of Data Types

bits per_byte : constant 8;

byte : constant 1;

word : constant : 2;

longword : constant = 4;

I
I
I
I
I
I
U
I
I
I

I CMU/SEI-69-TR-1 9 369

I
I

L.2. Untyped Storage

type hw_byte is range 0..255;

type hwbits8 is record
bitO : Boolean;
bitl : Boolean;
bit2 : Boolean;
bit3 : Boolean;
bit4 : Boolean;
bit5 : Boolean;
bit6 : Boolean;

bit7 : Boolean;
end record;

for hw bitsS use record
bitO &t 0 range 0..0;

bitl at 0 range I..i;
bit2 at 0 range 2..2;
bit3 at 0 range 3..3;
bit4 at 0 range 4..4;
bit5 at 0 range 5..5;
bit6 at 0 range 6..6;
bit7 at 0 range 7..7;

em: recozd;

function to-hw bits8 is
new unchecked conversion (hw byte,hw_bitsS);

type hwbyteptr is access hwbyte;
type hw bits8yptr is access hw" _itsS;

function to_hwbyteptr
is new uncheckedconversion (system. address, hw_bytejptr);

function tohw_bits _ptr
is new uncheckedconversion(system.address,hw bits8yPtr);

function to hw bits8 ptr
is new unchecked conversion (hw byteptr, hw bitsSyptx);

3I I
I

370 CMU/SEI-89-TR-1 9 I

I

L.3. Integer Types
type hwinteger is range -32_768 .. 32_767;
for hw-integer'size use 2 * bits_per_byte;

type hwshortinteger is range -128 .. 127;
fox hw_shortinteger' size use 1 * bits_per byte;

I type hw long integer is
range -2_147_483_648 .. 2147483547;3 for hwlong_integer'size use 4 * bits_per byte;

type hw natural is range 0 .. 32_767;
for hwnatural'size use 2 * bitsper_byte;

type hwpositive is range 1 .. 32 767;
for hw positive'size use 2 * bits-Fer byte;

type hwlongnatural is range 0 .. 2_147_483_647;
for hw_.long_natural' size use 4 * bits_px byte;

I type hw long positive is range 1 .. 2 147 483 647;
for hw_long_positive' size use 4 * bitsyer byte;I

L.4. Duration
3 type hw duration is

new duration range -86 400.0 .. +86 400.0;

for hwduration'small us 2.0 ** (-14);
for hw duration'size use 4 * bits per byte;

3 L.5. Machine Addresses

type hwaddress is new system.address;

function tohwaddress is
new unchecked-conversion (hwlong_integer, hwaddress);

I null hv address constant hw addess
:- to hwmaddress (hw_longinteger' (0));

II
I
U CMU/SEI-89-TR-1 9 371

I
I

L.6. Strings
type hvstring is new string;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

372 CMUISEJ.89.TR-19 I

I
U

References
[ALRM 83] American National Standards Institute, Inc.

Reference Manual for the Ada Programming Language.
Technical Report ANSI/MIL-STD 181 5A-1 983, ANSI, New York, NY,

1983.

[KFD 89] Bamberger, J., C. Colket, R. Firth, 0. Klein, R. Van Scoy.
Kernel Facilities Definition.
Technical Report CMU/SEI-88-TR-16, ESD-TR-88-17, ADA198933,

Software Engineering Institute, December, 1989.

[KUM 89] Bamberger, J., T. Coddington, R. Firth, D. Klein, D. Stinchcomb, R. Van
Scoy.
Kernel User's Manual.
Technical Report CMU/SEI-89-UG-1, ESD-TR-89-15, Software

Engineering Institute, December, 1989.

[port 89] Bamberger, J., T. Coddington, R. Firth, D. Klein, D. Stinchcomb, R. Van
Scoy.
Kernel Porting and Extension Guide.
Technical Report CMU/SEI-89-TR-40, ESD-TR-89-51, Software

Engineering Institute, Oct, 1989.

[Raynal 86] Raynal, M.
Algorithms for Mutual Exclusion.
The MIT Press, Cambridge, MA, 1986.

[TeleSoft 88] TeleGen2 - The TeleSoft Second Generation Ada Development Systemfor VAX/VMS to Embedded MC68OXO Targets
TeleSoft, 1988.

3 (Ward 85] Ward, P.T. and S.J. Mellor.
Structured Development for Real-Time Systems.
Yourdon Press, Englewood Cliffs, NJ, 1985.

3
I
U
I
U

iI CMU/SE1-89-TR-1 9 373

SECURITY CLASSIFICATION OF THIS PAGE

3 REPORT DOCUMENTATION PAGE
)a REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLAS SI FIED NONE
2. SECURITY CLASSIFICATION AUTHORITY Z3. 0,STRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b. OECLASSIFICATON/OOWNGRAOING SCHEOU.LE DISTRIBUTION UNLIMITEDI NA____________________

_

pE PRFORMING ORGANIZATION REPORT NUMABER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-89-TR-19 ESD-89-TR-27

6.. NAME OF PERFORMING ORGANIZATION ~b, OFFICE SYMBOL 7&, NAME OF MONITORING ORGANIZATION
I (If ap.Oticabte)

- SOFTWARE ENGINEERING INST. JSEI SEI JOINT PROGRAM OFFICEI 6 ,_ ADDRESS (City. State and 71P Code) 7b. ADDRESS (City. State and ZIP Code)

CARNEGIE-MELLON UNIVERSITY ESD/X.RSl
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE

___ ___ ___ ___ ___ ___ ___ __ ___ ___ ___ HANScnm- MA Q1711
Ge. NAME OF FUNDINGISPONSORING 8b. OFFICE SYMBOL. 9. PROCUREMENT INSTRUMENT IDENTIFICATIObINUMBER

ORGANIZATION orf appdicabt)

SEI JOINT PROGRAM OFFICE j ESDIXRS1 F1962885CO003I Sc. ADDRESS l'City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.______
CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

PITTSBURGH, PA 15213 ELEMENT No. NO. NO. NO.

1 .TI TLE (include Security Classificateon) 6 72 / / /

KERNELARCHITECTUREMANUAL ____________

12. PERSONAL AUTHOR(S) David StinChcomb,3 Judv Bainberger, Timothy Ccddington, Currie eolket, Robert Firth, Daniel Klein, Roger VanScox
* 13.L TYPE OF REPORT J13b. TIME COVERED [14. DATE OF REPORT (Y,-.. No.. Der) 15. PAGE COUNT

FTNAT. FROM ___ To ____ December 1989 I373I 16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on weuerse if neessary and identify by block number)
FED GROUP SUB. GR.

I 9. ABSTRACT (Cont(inue on 'vuerse ii'neeaay and identify by block numnber,

I 20. OISTRISUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

* UNCLASSIFIEO/UNLtMITEO ~J SAME AS RPT. 0 OTIC USERS 01 UNCLASSIFIED, UNLIMITED DISTRIBUTION
U 22.. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOLKARL Hi. SHINGLER tin cdlde Aea Code)

________________________________ 1 412 268-7630 SEI JPO

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF TIS PAG

